refactor attention decoder

This commit is contained in:
yaozengwei 2024-02-23 15:21:01 +08:00
parent 1503351833
commit 0be32f3da0
2 changed files with 179 additions and 117 deletions

View File

@ -36,7 +36,7 @@ class AttentionDecoderModel(nn.Module):
vocab_size (int): Number of classes. vocab_size (int): Number of classes.
decoder_dim: (int,int): embedding dimension of 2 encoder stacks decoder_dim: (int,int): embedding dimension of 2 encoder stacks
attention_dim: (int,int): attention dimension of 2 encoder stacks attention_dim: (int,int): attention dimension of 2 encoder stacks
nhead (int, int): number of heads num_heads (int, int): number of heads
dim_feedforward (int, int): feedforward dimension in 2 encoder stacks dim_feedforward (int, int): feedforward dimension in 2 encoder stacks
num_encoder_layers (int): number of encoder layers num_encoder_layers (int): number of encoder layers
dropout (float): dropout rate dropout (float): dropout rate
@ -48,7 +48,7 @@ class AttentionDecoderModel(nn.Module):
decoder_dim: int = 512, decoder_dim: int = 512,
num_decoder_layers: int = 6, num_decoder_layers: int = 6,
attention_dim: int = 512, attention_dim: int = 512,
nhead: int = 8, num_heads: int = 8,
feedforward_dim: int = 2048, feedforward_dim: int = 2048,
memory_dim: int = 512, memory_dim: int = 512,
sos_id: int = 1, sos_id: int = 1,
@ -69,7 +69,7 @@ class AttentionDecoderModel(nn.Module):
d_model=decoder_dim, d_model=decoder_dim,
num_decoder_layers=num_decoder_layers, num_decoder_layers=num_decoder_layers,
attention_dim=attention_dim, attention_dim=attention_dim,
nhead=nhead, num_heads=num_heads,
feedforward_dim=feedforward_dim, feedforward_dim=feedforward_dim,
memory_dim=memory_dim, memory_dim=memory_dim,
dropout=dropout, dropout=dropout,
@ -111,7 +111,12 @@ class AttentionDecoderModel(nn.Module):
ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(ys, ys_lens) ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(ys, ys_lens)
# decoder forward # decoder forward
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens) decoder_out = self.decoder(
x=ys_in_pad,
x_lens=ys_in_lens,
memory=encoder_out,
memory_lens=encoder_out_lens,
)
loss = self.loss_fun(x=decoder_out, target=ys_out_pad) loss = self.loss_fun(x=decoder_out, target=ys_out_pad)
return loss return loss
@ -137,7 +142,12 @@ class AttentionDecoderModel(nn.Module):
ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(ys, ys_lens) ys_in_pad, ys_in_lens, ys_out_pad = self._pre_ys_in_out(ys, ys_lens)
# decoder forward # decoder forward
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens) decoder_out = self.decoder(
x=ys_in_pad,
x_lens=ys_in_lens,
memory=encoder_out,
memory_lens=encoder_out_lens,
)
batch_size, _, num_classes = decoder_out.size() batch_size, _, num_classes = decoder_out.size()
nll = nn.functional.cross_entropy( nll = nn.functional.cross_entropy(
@ -152,14 +162,13 @@ class AttentionDecoderModel(nn.Module):
class TransformerDecoder(nn.Module): class TransformerDecoder(nn.Module):
"""Transfomer decoder module. """Transfomer decoder module.
It is modified from https://github.com/espnet/espnet/blob/master/espnet2/asr/decoder/transformer_decoder.py.
Args: Args:
vocab_size: output dim vocab_size: output dim
d_model: decoder dimension d_model: decoder dimension
num_decoder_layers: number of decoder layers num_decoder_layers: number of decoder layers
attention_dim: total dimension of multi head attention attention_dim: total dimension of multi head attention
n_head: number of attention heads num_heads: number of attention heads
feedforward_dim: hidden dimension of feed_forward module feedforward_dim: hidden dimension of feed_forward module
dropout: dropout rate dropout: dropout rate
""" """
@ -170,7 +179,7 @@ class TransformerDecoder(nn.Module):
d_model: int = 512, d_model: int = 512,
num_decoder_layers: int = 6, num_decoder_layers: int = 6,
attention_dim: int = 512, attention_dim: int = 512,
nhead: int = 8, num_heads: int = 8,
feedforward_dim: int = 2048, feedforward_dim: int = 2048,
memory_dim: int = 512, memory_dim: int = 512,
dropout: float = 0.1, dropout: float = 0.1,
@ -178,14 +187,19 @@ class TransformerDecoder(nn.Module):
super().__init__() super().__init__()
self.embed = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model) self.embed = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model)
# Using absolute positional encoding # Absolute positional encoding
self.pos = PositionalEncoding(d_model, dropout_rate=0.1) self.pos = PositionalEncoding(d_model, dropout_rate=0.1)
self.num_layers = num_decoder_layers self.num_layers = num_decoder_layers
self.layers = nn.ModuleList( self.layers = nn.ModuleList(
[ [
DecoderLayer( DecoderLayer(
d_model, attention_dim, nhead, feedforward_dim, memory_dim, dropout d_model=d_model,
attention_dim=attention_dim,
num_heads=num_heads,
feedforward_dim=feedforward_dim,
memory_dim=memory_dim,
dropout=dropout,
) )
for _ in range(num_decoder_layers) for _ in range(num_decoder_layers)
] ]
@ -195,49 +209,67 @@ class TransformerDecoder(nn.Module):
def forward( def forward(
self, self,
memory: torch.Tensor, x: torch.Tensor,
memory_lens: torch.Tensor, x_lens: torch.Tensor,
ys_in_pad: torch.Tensor, memory: Optional[torch.Tensor] = None,
ys_in_lens: torch.Tensor, memory_lens: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]: ) -> torch.Tensor:
"""Forward decoder. """
Args: Args:
memory: encoded memory, (batch, maxlen_in, feat) x: Input tensor of shape (batch, tgt_len).
memory_lens: (batch,) x_lens: A tensor of shape (batch,) containing the number of tokens in `x`
ys_in_pad: input token ids, (batch, maxlen_out) before padding.
ys_in_lens: (batch, ) memory:
Memory sequence of shape (batch, src_len, memory_dim).
memory_lens:
A tensor of shape (batch,) containing the number of frames in
`memory` before padding.
Returns: Returns:
tgt: decoded token score before softmax (batch, maxlen_out, vocab_size) Decoded token logits before softmax (batch, tgt_len, vocab_size)
""" """
tgt = ys_in_pad x = self.embed(x) # (batch, tgt_len, embed_dim)
# tgt_mask: (B, 1, L) x = self.pos(x) # (batch, tgt_len, embed_dim)
tgt_mask = make_pad_mask(ys_in_lens)[:, None, :].to(tgt.device)
# m: (1, L, L)
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
# tgt_mask: (B, L, L)
tgt_mask = tgt_mask | (~m)
memory_mask = make_pad_mask(memory_lens)[:, None, :].to(memory.device) x = x.permute(1, 0, 2) # (tgt_len, batch, embed_dim)
tgt = self.embed(tgt) # construct attn_mask for self-attn modules
tgt = self.pos(tgt) padding_mask = make_pad_mask(x_lens) # (batch, tgt_len)
causal_mask = subsequent_mask(x.shape[0], device=x.device) # (seq_len, seq_len)
attn_mask = torch.logical_or(
padding_mask.unsqueeze(1), # (batch, 1, seq_len)
torch.logical_not(causal_mask).unsqueeze(0) # (1, seq_len, seq_len)
) # (batch, seq_len, seq_len)
if memory is not None:
memory = memory.permute(1, 0, 2) # (src_len, batch, memory_dim)
# construct memory_attn_mask for cross-attn modules
memory_padding_mask = make_pad_mask(memory_lens) # (batch, src_len)
memory_attn_mask = memory_padding_mask.unsqueeze(1) # (batch, 1, src_len)
else:
memory_attn_mask = None
for i, mod in enumerate(self.layers): for i, mod in enumerate(self.layers):
tgt = mod(tgt, tgt_mask, memory, memory_mask) x = mod(
x,
attn_mask=attn_mask,
memory=memory,
memory_attn_mask=memory_attn_mask,
)
tgt = self.output_layer(tgt) x = x.permute(1, 0, 2) # (batch, tgt_len, vocab_size)
return tgt x = self.output_layer(x)
return x
class DecoderLayer(nn.Module): class DecoderLayer(nn.Module):
"""Single decoder layer module. """Single decoder layer module.
Args: Args:
d_model: equal to encoder_dim d_model: equal to decoder_dim, total dimension of the decoder
attention_dim: total dimension of multi head attention attention_dim: total dimension of multi head attention
n_head: number of attention heads num_heads: number of attention heads
feedforward_dim: hidden dimension of feed_forward module feedforward_dim: hidden dimension of feed_forward module
dropout: dropout rate dropout: dropout rate
""" """
@ -246,7 +278,7 @@ class DecoderLayer(nn.Module):
self, self,
d_model: int = 512, d_model: int = 512,
attention_dim: int = 512, attention_dim: int = 512,
nhead: int = 8, num_heads: int = 8,
feedforward_dim: int = 2048, feedforward_dim: int = 2048,
memory_dim: int = 512, memory_dim: int = 512,
dropout: float = 0.1, dropout: float = 0.1,
@ -255,10 +287,14 @@ class DecoderLayer(nn.Module):
super(DecoderLayer, self).__init__() super(DecoderLayer, self).__init__()
self.norm_self_attn = nn.LayerNorm(d_model) self.norm_self_attn = nn.LayerNorm(d_model)
self.self_attn = MultiHeadedAttention(d_model, attention_dim, nhead, dropout=0.0) self.self_attn = MultiHeadAttention(
d_model, attention_dim, num_heads, dropout=0.0
)
self.norm_src_attn = nn.LayerNorm(d_model) self.norm_src_attn = nn.LayerNorm(d_model)
self.src_attn = MultiHeadedAttention(d_model, attention_dim, nhead, memory_dim=memory_dim, dropout=0.0) self.src_attn = MultiHeadAttention(
d_model, attention_dim, num_heads, memory_dim=memory_dim, dropout=0.0
)
self.norm_ff = nn.LayerNorm(d_model) self.norm_ff = nn.LayerNorm(d_model)
self.feed_forward = nn.Sequential( self.feed_forward = nn.Sequential(
@ -270,40 +306,53 @@ class DecoderLayer(nn.Module):
self.dropout = nn.Dropout(dropout) self.dropout = nn.Dropout(dropout)
def forward(self, tgt, tgt_mask, memory, memory_mask): def forward(
"""Compute decoded features. self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
memory: Optional[torch.Tensor] = None,
memory_attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args: Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). x: Input sequence of shape (seq_len, batch, embed_dim).
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). attn_mask: A binary mask for self-attention module indicating which
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size). elements will be filled with -inf.
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). Its shape is (batch, 1, src_len) or (batch, tgt_len, src_len).
memory: Memory sequence of shape (seq_len, batch, memory_dim).
Returns: memory_attn_mask: A binary mask for cross-attention module indicating which
torch.Tensor: Output tensor(#batch, maxlen_out, size). elements will be filled with -inf.
Its shape is (batch, 1, src_len) or (batch, tgt_len, src_len).
""" """
# self-attn module # self-attn module
tgt_norm = self.norm_self_attn(tgt) qkv = self.norm_self_attn(x)
tgt = tgt + self.dropout(self.self_attn(tgt_norm, tgt_norm, tgt_norm, tgt_mask)) self_attn_out = self.self_attn(
query=qkv, key=qkv, value=qkv, attn_mask=attn_mask
)
x = x + self.dropout(self_attn_out)
# cross-attn module # cross-attn module
tgt = tgt + self.dropout(self.src_attn(self.norm_src_attn(tgt), memory, memory, memory_mask)) q = self.norm_src_attn(x)
src_attn_out = self.src_attn(
query=q, key=memory, value=memory, attn_mask=memory_attn_mask
)
x = x + self.dropout(src_attn_out)
# feed-forward module # feed-forward module
tgt = tgt + self.dropout(self.feed_forward(self.norm_ff(tgt))) x = x + self.dropout(self.feed_forward(self.norm_ff(x)))
return tgt return x
class MultiHeadedAttention(nn.Module): class MultiHeadAttention(nn.Module):
"""Multi-Head Attention layer. """Multi-Head Attention layer.
Args: Args:
embed_dim: total dimension of the model. embed_dim: total dimension of the model.
attention_dim: dimension in the attention module, may be less or more than embed_dim attention_dim: dimension in the attention module, but must be a multiple of num_heads.
but must be a multiple of num_heads. num_heads: number of parallel attention heads.
num_heads: parallel attention heads. memory_dim: dimension of memory embedding, optional.
dropout: a Dropout layer on attn_output_weights. Default: 0.0. dropout: a Dropout layer on attn_output_weights.
""" """
def __init__( def __init__(
@ -312,20 +361,18 @@ class MultiHeadedAttention(nn.Module):
attention_dim: int, attention_dim: int,
num_heads: int, num_heads: int,
memory_dim: Optional[int] = None, memory_dim: Optional[int] = None,
dropout: float = 0.0 dropout: float = 0.0,
): ):
"""Construct an MultiHeadedAttention object.""" super(MultiHeadAttention, self).__init__()
super(MultiHeadedAttention, self).__init__()
self.embed_dim = embed_dim self.embed_dim = embed_dim
self.attention_dim = attention_dim self.attention_dim = attention_dim
self.num_heads = num_heads self.num_heads = num_heads
self.dropout = dropout
self.head_dim = attention_dim // num_heads self.head_dim = attention_dim // num_heads
assert self.head_dim * num_heads == attention_dim, ( assert self.head_dim * num_heads == attention_dim, (
self.head_dim, self.head_dim, num_heads, attention_dim
num_heads,
attention_dim,
) )
self.dropout = dropout
self.name = None # will be overwritten in training code; for diagnostics.
self.linear_q = nn.Linear(embed_dim, attention_dim, bias=True) self.linear_q = nn.Linear(embed_dim, attention_dim, bias=True)
self.linear_k = nn.Linear( self.linear_k = nn.Linear(
@ -334,74 +381,89 @@ class MultiHeadedAttention(nn.Module):
self.linear_v = nn.Linear( self.linear_v = nn.Linear(
embed_dim if memory_dim is None else memory_dim, attention_dim, bias=True embed_dim if memory_dim is None else memory_dim, attention_dim, bias=True
) )
self.scale = math.sqrt(self.head_dim)
self.out_proj = nn.Linear(attention_dim, embed_dim, bias=True) self.out_proj = nn.Linear(attention_dim, embed_dim, bias=True)
def forward(self, query, key, value, mask): def forward(
"""Compute scaled dot product attention. self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
key_padding_mask: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute dot product attention.
Args: Args:
query (torch.Tensor): Query tensor (#batch, time1, size). query: Query tensor of shape (tgt_len, batch, embed_dim).
key (torch.Tensor): Key tensor (#batch, time2, size). key: Key tensor of shape (src_len, batch, embed_dim or memory_dim).
value (torch.Tensor): Value tensor (#batch, time2, size). value: Value tensor of shape (src_len, batch, embed_dim or memory_dim).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or key_padding_mask: A binary mask indicating which elements are padding.
(#batch, time1, time2). Its shape is (batch, src_len).
attn_mask: A binary mask indicating which elements will be filled with -inf.
Its shape is (batch, 1, src_len) or (batch, tgt_len, src_len).
Returns: Returns:
torch.Tensor: Output tensor (#batch, time1, d_model). Output tensor of shape (tgt_len, batch, embed_dim).
""" """
bsz, tgt_len, _ = query.size()
src_len = key.size(1)
num_heads = self.num_heads num_heads = self.num_heads
head_dim = self.head_dim head_dim = self.head_dim
q = self.linear_q(query) tgt_len, batch, _ = query.shape
k = self.linear_k(key) src_len = key.shape[0]
v = self.linear_v(value)
q = q.reshape(bsz, tgt_len, num_heads, head_dim) q = self.linear_q(query) # (tgt_len, batch, num_heads * head_dim)
q = q.transpose(1, 2) # (batch, head, time1, head_dim) k = self.linear_k(key) # (src_len, batch, num_heads * head_dim)
k = k.reshape(bsz, src_len, num_heads, head_dim) v = self.linear_v(value) # (src_len, batch, num_heads * head_dim)
k = k.permute(0, 2, 3, 1) # (batch, head, head_dim, time2)
v = v.reshape(bsz, src_len, num_heads, head_dim)
v = v.transpose(1, 2).reshape(bsz * num_heads, src_len, head_dim)
# (batch, head, time1, time2) q = q.reshape(tgt_len, batch, num_heads, head_dim)
attn_output_weights = torch.matmul(q, k) / self.scale q = q.permute(1, 2, 0, 3) # (batch, head, tgt_len, head_dim)
k = k.reshape(src_len, batch, num_heads, head_dim)
k = k.permute(1, 2, 3, 0) # (batch, head, head_dim, src_len)
v = v.reshape(src_len, batch, num_heads, head_dim)
v = v.reshape(src_len, batch * num_heads, head_dim).transpose(0, 1)
# attn_output_weights = torch.matmul(q, k) # Note: could remove the scaling operation when using ScaledAdam
# # This is a harder way of limiting the attention scores to not be too large. # (batch, head, tgt_len, src_len)
# # It incurs a penalty if any of them has an absolute value greater than 50.0. attn_weights = torch.matmul(q, k) / math.sqrt(head_dim)
# # this should be outside the normal range of the attention scores. We use
# # this mechanism instead of, say, a limit on entropy, because once the entropy
# # gets very small gradients through the softmax can become very small, and
# # some mechanisms like that become ineffective.
attn_output_weights = penalize_abs_values_gt(
attn_output_weights, limit=50.0, penalty=1.0e-04
)
if mask is not None: # From zipformer.py:
attn_output_weights = attn_output_weights.masked_fill( # This is a harder way of limiting the attention scores to not be too large.
mask.unsqueeze(1), float("-inf") # It incurs a penalty if any of them has an absolute value greater than 50.0.
# this should be outside the normal range of the attention scores. We use
# this mechanism instead of, say, a limit on entropy, because once the entropy
# gets very small gradients through the softmax can become very small, and
# some mechanisms like that become ineffective.
attn_weights = penalize_abs_values_gt(attn_weights, limit=50.0, penalty=1.0e-04)
if key_padding_mask is not None:
assert key_padding_mask.shape == (batch, src_len), key_padding_mask.shape
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2), float("-inf"),
) )
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) if attn_mask is not None:
assert (
attn_mask.shape == (batch, 1, src_len)
or attn_mask.shape == (batch, tgt_len, src_len)
), attn_mask.shape
attn_weights = attn_weights.masked_fill(attn_mask.unsqueeze(1), float("-inf"))
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1) attn_weights = attn_weights.view(batch * num_heads, tgt_len, src_len)
attn_output_weights = nn.functional.dropout( attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output_weights, p=self.dropout, training=self.training
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) )
# (bsz * head, time1, head_dim_v) # (batch * head, tgt_len, head_dim)
attn_output = torch.bmm(attn_output_weights, v) attn_output = torch.bmm(attn_weights, v)
assert attn_output.shape == (bsz * num_heads, tgt_len, head_dim) assert attn_output.shape == (batch * num_heads, tgt_len, head_dim), attn_output.shape
attn_output = (
attn_output.reshape(bsz, num_heads, tgt_len, head_dim) attn_output = attn_output.transpose(0, 1).contiguous()
.transpose(1, 2) attn_output = attn_output.view(tgt_len, batch, num_heads * head_dim)
.reshape(bsz, tgt_len, self.attention_dim)
) # (batch, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output) attn_output = self.out_proj(attn_output)
return attn_output return attn_output
@ -488,7 +550,7 @@ def _test_attention_decoder_model():
decoder_dim=512, decoder_dim=512,
num_decoder_layers=6, num_decoder_layers=6,
attention_dim=512, attention_dim=512,
nhead=8, num_heads=8,
feedforward_dim=2048, feedforward_dim=2048,
memory_dim=384, memory_dim=384,
dropout=0.1, dropout=0.1,

View File

@ -662,7 +662,7 @@ def get_attention_decoder_model(params: AttributeDict) -> nn.Module:
decoder_dim=params.attention_decoder_dim, decoder_dim=params.attention_decoder_dim,
num_decoder_layers=params.attention_decoder_num_layers, num_decoder_layers=params.attention_decoder_num_layers,
attention_dim=params.attention_decoder_attention_dim, attention_dim=params.attention_decoder_attention_dim,
nhead=params.attention_decoder_num_heads, num_heads=params.attention_decoder_num_heads,
feedforward_dim=params.attention_decoder_feedforward_dim, feedforward_dim=params.attention_decoder_feedforward_dim,
memory_dim=max(_to_int_tuple(params.encoder_dim)), memory_dim=max(_to_int_tuple(params.encoder_dim)),
sos_id=params.sos_id, sos_id=params.sos_id,