mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
Fix regarding reverse_cutoff formula
This commit is contained in:
parent
8a0277d493
commit
0aa5a334d6
@ -681,10 +681,10 @@ class NeutralGradient(Optimizer):
|
||||
if size == 1:
|
||||
continue
|
||||
param_diag_var = param_diag_vars[dim]
|
||||
num_samples = (p.numel() // size) * 4 > size
|
||||
num_samples = p.numel() // size
|
||||
# don't apply this reverse_cutoff thing in situations where we can't get a reasonable estimate
|
||||
# of param_cov even with stats accumulation, due to the shape of the tensor.
|
||||
reverse_cutoff = (param_reverse_cutoff if num_samples > size//4 else 1.0e+10)
|
||||
reverse_cutoff = (param_reverse_cutoff if num_samples > size // 4 else 1.0e+10)
|
||||
param_diag_var = self._smooth_param_diag_var(param_diag_var,
|
||||
param_pow,
|
||||
param_rel_eps,
|
||||
@ -920,8 +920,6 @@ class NeutralGradient(Optimizer):
|
||||
# S_sqrt is S.sqrt() in the limit where param_pow == 1.0,
|
||||
# param_rel_eps=0, param_rel_max=inf
|
||||
|
||||
# don't apply this reverse_cutoff thing in situations where we can't get a reasonable estimate
|
||||
# of param_cov even with stats accumulation, due to the shape of the tensor.
|
||||
S_smoothed = self._smooth_param_diag_var(S, param_pow,
|
||||
param_rel_eps, param_rel_max,
|
||||
param_reverse_cutoff)
|
||||
|
Loading…
x
Reference in New Issue
Block a user