mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 09:04:19 +00:00
Minor fixes
This commit is contained in:
parent
3aacf75652
commit
09b0c54983
@ -26,11 +26,15 @@ class DecodeStream(object):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
|
initial_states: List[torch.Tensor],
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
device: torch.device = torch.device("cpu"),
|
device: torch.device = torch.device("cpu"),
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
|
initial_states:
|
||||||
|
Initial decode states of the model, e.g. the return value of
|
||||||
|
`get_init_state` in conformer.py
|
||||||
decoding_graph:
|
decoding_graph:
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
device:
|
device:
|
||||||
@ -41,6 +45,8 @@ class DecodeStream(object):
|
|||||||
|
|
||||||
self.params = params
|
self.params = params
|
||||||
|
|
||||||
|
self.states = initial_states
|
||||||
|
|
||||||
# It contains a 2-D tensors representing the feature frames.
|
# It contains a 2-D tensors representing the feature frames.
|
||||||
self.features: torch.Tensor = None
|
self.features: torch.Tensor = None
|
||||||
# how many frames are processed. (before subsampling).
|
# how many frames are processed. (before subsampling).
|
||||||
@ -56,7 +62,6 @@ class DecodeStream(object):
|
|||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
self.hyp = [params.blank_id] * params.context_size
|
self.hyp = [params.blank_id] * params.context_size
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
# feature_len is needed to get partial results.
|
|
||||||
# The rnnt_decoding_stream for fast_beam_search.
|
# The rnnt_decoding_stream for fast_beam_search.
|
||||||
self.rnnt_decoding_stream: k2.RnntDecodingStream = (
|
self.rnnt_decoding_stream: k2.RnntDecodingStream = (
|
||||||
k2.RnntDecodingStream(decoding_graph)
|
k2.RnntDecodingStream(decoding_graph)
|
||||||
@ -66,31 +71,6 @@ class DecodeStream(object):
|
|||||||
False
|
False
|
||||||
), f"Decoding method :{params.decoding_method} do not support"
|
), f"Decoding method :{params.decoding_method} do not support"
|
||||||
|
|
||||||
# The caches for streaming conformer
|
|
||||||
# It is a List containing two tensors, the first one is the cache for
|
|
||||||
# attention which has a shape of
|
|
||||||
# (num_encoder_layers, left_context, encoder_dim),
|
|
||||||
# the second one is the cache of conv_module which has a shape of
|
|
||||||
# (num_encoder_layers, cnn_module_kernel - 1, encoder_dim).
|
|
||||||
self.states: List[torch.Tensor] = [
|
|
||||||
torch.zeros(
|
|
||||||
(
|
|
||||||
params.num_encoder_layers,
|
|
||||||
params.left_context,
|
|
||||||
params.encoder_dim,
|
|
||||||
),
|
|
||||||
device=device,
|
|
||||||
),
|
|
||||||
torch.zeros(
|
|
||||||
(
|
|
||||||
params.num_encoder_layers,
|
|
||||||
params.cnn_module_kernel - 1,
|
|
||||||
params.encoder_dim,
|
|
||||||
),
|
|
||||||
device=device,
|
|
||||||
),
|
|
||||||
]
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def done(self) -> bool:
|
def done(self) -> bool:
|
||||||
"""Return True if all the features are processed."""
|
"""Return True if all the features are processed."""
|
||||||
@ -105,6 +85,8 @@ class DecodeStream(object):
|
|||||||
|
|
||||||
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
||||||
"""Consume chunk_size frames of features"""
|
"""Consume chunk_size frames of features"""
|
||||||
|
# plus 3 here because we subsampling features with
|
||||||
|
# lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||||
ret_chunk_size = min(
|
ret_chunk_size = min(
|
||||||
self.features.size(0) - self.num_processed_frames, chunk_size + 3
|
self.features.size(0) - self.num_processed_frames, chunk_size + 3
|
||||||
)
|
)
|
||||||
|
@ -378,7 +378,7 @@ def decode_one_chunk(
|
|||||||
]
|
]
|
||||||
|
|
||||||
# Note: states will be modified in streaming_forward.
|
# Note: states will be modified in streaming_forward.
|
||||||
encoder_out, encoder_out_lens = model.encoder.streaming_forward(
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||||
x=features,
|
x=features,
|
||||||
x_lens=feature_lens,
|
x_lens=feature_lens,
|
||||||
states=states,
|
states=states,
|
||||||
@ -462,10 +462,12 @@ def decode_dataset(
|
|||||||
decode_results = []
|
decode_results = []
|
||||||
# Contain decode streams currently running.
|
# Contain decode streams currently running.
|
||||||
decode_streams = []
|
decode_streams = []
|
||||||
|
initial_states = model.get_init_state(params.left_context, device=device)
|
||||||
for num, cut in enumerate(cuts):
|
for num, cut in enumerate(cuts):
|
||||||
# each utterance has a DecodeStream.
|
# each utterance has a DecodeStream.
|
||||||
decode_stream = DecodeStream(
|
decode_stream = DecodeStream(
|
||||||
params=params,
|
params=params,
|
||||||
|
initial_states=initial_states,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
device=device,
|
device=device,
|
||||||
)
|
)
|
||||||
|
@ -353,7 +353,6 @@ def get_params() -> AttributeDict:
|
|||||||
"nhead": 8,
|
"nhead": 8,
|
||||||
"dim_feedforward": 2048,
|
"dim_feedforward": 2048,
|
||||||
"num_encoder_layers": 12,
|
"num_encoder_layers": 12,
|
||||||
"cnn_module_kernel": 31,
|
|
||||||
"vgg_frontend": False,
|
"vgg_frontend": False,
|
||||||
# parameters for decoder
|
# parameters for decoder
|
||||||
"embedding_dim": 512,
|
"embedding_dim": 512,
|
||||||
@ -376,7 +375,6 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|||||||
nhead=params.nhead,
|
nhead=params.nhead,
|
||||||
dim_feedforward=params.dim_feedforward,
|
dim_feedforward=params.dim_feedforward,
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
cnn_module_kernel=params.cnn_module_kernel,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
vgg_frontend=params.vgg_frontend,
|
||||||
dynamic_chunk_training=params.dynamic_chunk_training,
|
dynamic_chunk_training=params.dynamic_chunk_training,
|
||||||
short_chunk_size=params.short_chunk_size,
|
short_chunk_size=params.short_chunk_size,
|
||||||
|
@ -122,6 +122,7 @@ class Conformer(EncoderInterface):
|
|||||||
causal,
|
causal,
|
||||||
)
|
)
|
||||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
|
self._init_state = torch.jit.Attribute([], List[torch.Tensor])
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
|
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
|
||||||
@ -194,6 +195,55 @@ class Conformer(EncoderInterface):
|
|||||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
return x, lengths
|
return x, lengths
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def get_init_state(
|
||||||
|
self, left_context: int, device: torch.device
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Return the initial cache state of the model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
left_context: The left context size (in frames after subsampling).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return the initial state of the model, it is a list containing two
|
||||||
|
tensors, the first one is the cache for attentions which has a shape
|
||||||
|
of (num_encoder_layers, left_context, encoder_dim), the second one
|
||||||
|
is the cache of conv_modules which has a shape of
|
||||||
|
(num_encoder_layers, cnn_module_kernel - 1, encoder_dim).
|
||||||
|
|
||||||
|
NOTE: the returned tensors are on the given device.
|
||||||
|
"""
|
||||||
|
if (
|
||||||
|
len(self._init_state) == 2
|
||||||
|
and self._init_state[0].size(1) == left_context
|
||||||
|
):
|
||||||
|
# Note: It is OK to share the init state as it is
|
||||||
|
# not going to be modified by the model
|
||||||
|
return self._init_state
|
||||||
|
|
||||||
|
init_states: List[torch.Tensor] = [
|
||||||
|
torch.zeros(
|
||||||
|
(
|
||||||
|
self.encoder_layers,
|
||||||
|
left_context,
|
||||||
|
self.d_model,
|
||||||
|
),
|
||||||
|
device=device,
|
||||||
|
),
|
||||||
|
torch.zeros(
|
||||||
|
(
|
||||||
|
self.encoder_layers,
|
||||||
|
self.cnn_module_kernel - 1,
|
||||||
|
self.d_model,
|
||||||
|
),
|
||||||
|
device=device,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
self._init_state = init_states
|
||||||
|
|
||||||
|
return init_states
|
||||||
|
|
||||||
@torch.jit.export
|
@torch.jit.export
|
||||||
def streaming_forward(
|
def streaming_forward(
|
||||||
self,
|
self,
|
||||||
@ -206,7 +256,7 @@ class Conformer(EncoderInterface):
|
|||||||
right_context: int = 4,
|
right_context: int = 4,
|
||||||
simulate_streaming: bool = False,
|
simulate_streaming: bool = False,
|
||||||
processed_lens: Optional[Tensor] = None,
|
processed_lens: Optional[Tensor] = None,
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
@ -296,7 +346,7 @@ class Conformer(EncoderInterface):
|
|||||||
embed, pos_enc = self.encoder_pos(embed, left_context)
|
embed, pos_enc = self.encoder_pos(embed, left_context)
|
||||||
embed = embed.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
embed = embed.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
|
||||||
x = self.encoder.chunk_forward(
|
x, states = self.encoder.chunk_forward(
|
||||||
embed,
|
embed,
|
||||||
pos_enc,
|
pos_enc,
|
||||||
src_key_padding_mask=src_key_padding_mask,
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
@ -338,7 +388,7 @@ class Conformer(EncoderInterface):
|
|||||||
|
|
||||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
return x, lengths
|
return x, lengths, states
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoderLayer(nn.Module):
|
class ConformerEncoderLayer(nn.Module):
|
||||||
@ -490,7 +540,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
warmup: float = 1.0,
|
warmup: float = 1.0,
|
||||||
left_context: int = 0,
|
left_context: int = 0,
|
||||||
right_context: int = 0,
|
right_context: int = 0,
|
||||||
) -> Tensor:
|
) -> Tuple[Tensor, List[Tensor]]:
|
||||||
"""
|
"""
|
||||||
Pass the input through the encoder layer.
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
@ -527,6 +577,12 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
# macaron style feed forward module
|
# macaron style feed forward module
|
||||||
src = src + self.dropout(self.feed_forward_macaron(src))
|
src = src + self.dropout(self.feed_forward_macaron(src))
|
||||||
|
|
||||||
|
# We put the attention cache this level (i.e. before linear transformation)
|
||||||
|
# to save memory consumption, when decoding in streaming fashion, the
|
||||||
|
# batch size would be thousands (for 32GB machine), if we cache key & val
|
||||||
|
# separately, it needs extra several GB memory.
|
||||||
|
# TODO(WeiKang): Move cache to self_attn level (i.e. cache key & val
|
||||||
|
# separately) if needed.
|
||||||
key = torch.cat([states[0], src], dim=0)
|
key = torch.cat([states[0], src], dim=0)
|
||||||
val = key
|
val = key
|
||||||
if right_context > 0:
|
if right_context > 0:
|
||||||
@ -560,7 +616,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
|
|
||||||
src = self.norm_final(self.balancer(src))
|
src = self.norm_final(self.balancer(src))
|
||||||
|
|
||||||
return src
|
return src, states
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoder(nn.Module):
|
class ConformerEncoder(nn.Module):
|
||||||
@ -635,7 +691,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
warmup: float = 1.0,
|
warmup: float = 1.0,
|
||||||
left_context: int = 0,
|
left_context: int = 0,
|
||||||
right_context: int = 0,
|
right_context: int = 0,
|
||||||
) -> Tensor:
|
) -> Tuple[Tensor, List[Tensor]]:
|
||||||
r"""Pass the input through the encoder layers in turn.
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -678,7 +734,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
|
|
||||||
for layer_index, mod in enumerate(self.layers):
|
for layer_index, mod in enumerate(self.layers):
|
||||||
cache = [states[0][layer_index], states[1][layer_index]]
|
cache = [states[0][layer_index], states[1][layer_index]]
|
||||||
output = mod.chunk_forward(
|
output, cache = mod.chunk_forward(
|
||||||
output,
|
output,
|
||||||
pos_emb,
|
pos_emb,
|
||||||
states=cache,
|
states=cache,
|
||||||
@ -691,7 +747,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
states[0][layer_index] = cache[0]
|
states[0][layer_index] = cache[0]
|
||||||
states[1][layer_index] = cache[1]
|
states[1][layer_index] = cache[1]
|
||||||
|
|
||||||
return output
|
return output, states
|
||||||
|
|
||||||
|
|
||||||
class RelPositionalEncoding(torch.nn.Module):
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
@ -357,7 +357,8 @@ def decode_one_chunk(
|
|||||||
|
|
||||||
for stream in decode_streams:
|
for stream in decode_streams:
|
||||||
feat, feat_len = stream.get_feature_frames(
|
feat, feat_len = stream.get_feature_frames(
|
||||||
(params.decode_chunk_size + 2) * params.subsampling_factor
|
(params.decode_chunk_size + 2 + params.right_context)
|
||||||
|
* params.subsampling_factor
|
||||||
)
|
)
|
||||||
features.append(feat)
|
features.append(feat)
|
||||||
feature_lens.append(feat_len)
|
feature_lens.append(feat_len)
|
||||||
@ -394,8 +395,7 @@ def decode_one_chunk(
|
|||||||
]
|
]
|
||||||
processed_feature_lens = torch.tensor(processed_feature_lens, device=device)
|
processed_feature_lens = torch.tensor(processed_feature_lens, device=device)
|
||||||
|
|
||||||
# Note: states will be modified in streaming_forward.
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||||
encoder_out, encoder_out_lens = model.encoder.streaming_forward(
|
|
||||||
x=features,
|
x=features,
|
||||||
x_lens=feature_lens,
|
x_lens=feature_lens,
|
||||||
states=states,
|
states=states,
|
||||||
@ -475,15 +475,17 @@ def decode_dataset(
|
|||||||
opts.frame_opts.samp_freq = 16000
|
opts.frame_opts.samp_freq = 16000
|
||||||
opts.mel_opts.num_bins = 80
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
log_interval = 300
|
log_interval = 50
|
||||||
|
|
||||||
decode_results = []
|
decode_results = []
|
||||||
# Contain decode streams currently running.
|
# Contain decode streams currently running.
|
||||||
decode_streams = []
|
decode_streams = []
|
||||||
|
initial_states = model.get_init_state(params.left_context, device=device)
|
||||||
for num, cut in enumerate(cuts):
|
for num, cut in enumerate(cuts):
|
||||||
# each utterance has a DecodeStream.
|
# each utterance has a DecodeStream.
|
||||||
decode_stream = DecodeStream(
|
decode_stream = DecodeStream(
|
||||||
params=params,
|
params=params,
|
||||||
|
initial_states=initial_states,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
device=device,
|
device=device,
|
||||||
)
|
)
|
||||||
|
@ -393,7 +393,6 @@ def get_params() -> AttributeDict:
|
|||||||
"nhead": 8,
|
"nhead": 8,
|
||||||
"dim_feedforward": 2048,
|
"dim_feedforward": 2048,
|
||||||
"num_encoder_layers": 12,
|
"num_encoder_layers": 12,
|
||||||
"cnn_module_kernel": 31,
|
|
||||||
# parameters for decoder
|
# parameters for decoder
|
||||||
"decoder_dim": 512,
|
"decoder_dim": 512,
|
||||||
# parameters for joiner
|
# parameters for joiner
|
||||||
@ -416,7 +415,6 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|||||||
nhead=params.nhead,
|
nhead=params.nhead,
|
||||||
dim_feedforward=params.dim_feedforward,
|
dim_feedforward=params.dim_feedforward,
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
cnn_module_kernel=params.cnn_module_kernel,
|
|
||||||
dynamic_chunk_training=params.dynamic_chunk_training,
|
dynamic_chunk_training=params.dynamic_chunk_training,
|
||||||
short_chunk_size=params.short_chunk_size,
|
short_chunk_size=params.short_chunk_size,
|
||||||
num_left_chunks=params.num_left_chunks,
|
num_left_chunks=params.num_left_chunks,
|
||||||
|
@ -58,6 +58,7 @@ Usage:
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import math
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
@ -87,9 +88,12 @@ from icefall.utils import (
|
|||||||
AttributeDict,
|
AttributeDict,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
@ -219,6 +223,70 @@ def get_parser():
|
|||||||
Used only when the decoding_method is fast_beam_search_nbest_oracle.
|
Used only when the decoding_method is fast_beam_search_nbest_oracle.
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dynamic-chunk-training",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use dynamic_chunk_training, if you want a streaming
|
||||||
|
model, this requires to be True.
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--short-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=25,
|
||||||
|
help="""Chunk length of dynamic training, the chunk size would be either
|
||||||
|
max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-left-chunks",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""How many left context can be seen in chunks when calculating attention.
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--causal-convolution",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use causal convolution, this requires to be True when
|
||||||
|
using dynamic_chunk_training.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--right-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -268,9 +336,27 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
feature_lens += params.left_context
|
||||||
x=feature, x_lens=feature_lens
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, params.left_context),
|
||||||
|
value=LOG_EPS,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=[],
|
||||||
|
chunk_size=params.right_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -509,6 +595,10 @@ def main():
|
|||||||
else:
|
else:
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.right_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
params.suffix += f"-beam-{params.beam}"
|
params.suffix += f"-beam-{params.beam}"
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
@ -544,6 +634,11 @@ def main():
|
|||||||
params.unk_id = sp.unk_id()
|
params.unk_id = sp.unk_id()
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless/decode_stream.py
|
721
egs/librispeech/ASR/pruned_transducer_stateless3/streaming_decode.py
Executable file
721
egs/librispeech/ASR/pruned_transducer_stateless3/streaming_decode.py
Executable file
@ -0,0 +1,721 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--decoding_method greedy_search \
|
||||||
|
--num-decode-streams 200
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from librispeech import LibriSpeech
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Support only greedy_search and fast_beam_search now.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dynamic-chunk-training",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use dynamic_chunk_training, if you want a streaming
|
||||||
|
model, this requires to be True.
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--short-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=25,
|
||||||
|
help="""Chunk length of dynamic training, the chunk size would be either
|
||||||
|
max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-left-chunks",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""How many left context can be seen in chunks when calculating attention.
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--causal-convolution",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""Whether to use causal convolution, this requires to be True when
|
||||||
|
using dynamic_chunk_training.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--right-context",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="right context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
streams: List[DecodeStream],
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
assert len(streams) == encoder_out.size(0)
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_out is of shape (N, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# logging.info(f"decoder_out shape : {decoder_out.shape}")
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
streams[i].hyp.append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
hyp_tokens = []
|
||||||
|
for stream in streams:
|
||||||
|
hyp_tokens.append(stream.hyp)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
processed_lens: torch.Tensor,
|
||||||
|
decoding_streams: k2.RnntDecodingStreams,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, joiner_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
|
||||||
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyp_tokens = get_texts(best_path)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
|
||||||
|
rnnt_stream_list = []
|
||||||
|
processed_feature_lens = []
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(
|
||||||
|
(params.decode_chunk_size + 2 + params.right_context)
|
||||||
|
* params.subsampling_factor
|
||||||
|
)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_feature_lens.append(stream.feature_len)
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
rnnt_stream_list.append(stream.rnnt_decoding_stream)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# if T is less than 7 there will be an error in time reduction layer,
|
||||||
|
# because we subsample features with ((x_len - 1) // 2 - 1) // 2
|
||||||
|
tail_length = 15 + params.right_context * params.subsampling_factor
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
feature_lens += tail_length - features.size(1)
|
||||||
|
features = torch.cat(
|
||||||
|
[
|
||||||
|
features,
|
||||||
|
torch.tensor(
|
||||||
|
LOG_EPS, dtype=features.dtype, device=device
|
||||||
|
).expand(
|
||||||
|
features.size(0),
|
||||||
|
tail_length - features.size(1),
|
||||||
|
features.size(2),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = [
|
||||||
|
torch.stack([x[0] for x in states], dim=2),
|
||||||
|
torch.stack([x[1] for x in states], dim=2),
|
||||||
|
]
|
||||||
|
processed_feature_lens = torch.tensor(processed_feature_lens, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=states,
|
||||||
|
left_context=params.left_context,
|
||||||
|
right_context=params.right_context,
|
||||||
|
processed_lens=processed_feature_lens,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp_tokens = greedy_search(model, encoder_out, decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
decoder_history_len=params.context_size,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(rnnt_stream_list, config)
|
||||||
|
processed_lens = processed_feature_lens + encoder_out_lens
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model, encoder_out, processed_lens, decoding_streams
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False
|
||||||
|
|
||||||
|
states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)]
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = [states[0][i], states[1][i]]
|
||||||
|
decode_streams[i].feature_len += encoder_out_lens[i]
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decode_streams[i].hyp = hyp_tokens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 50
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
initial_states = model.get_init_state(params.left_context, device=device)
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params, model, sp, decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(hyp).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(params, model, sp, decode_streams)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(hyp).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
key = "greedy_search"
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=sorted(results))
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
# for streaming
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
params.suffix += f"-right-context-{params.right_context}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
librispeech = LibriSpeech(params.manifest_dir)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_cuts = [test_clean_cuts, test_other_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -286,6 +286,59 @@ def get_parser():
|
|||||||
help="The probability to select a batch from the GigaSpeech dataset",
|
help="The probability to select a batch from the GigaSpeech dataset",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dynamic-chunk-training",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use dynamic_chunk_training, if you want a streaming
|
||||||
|
model, this requires to be True.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--causal-convolution",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use causal convolution, this requires to be True when
|
||||||
|
using dynamic_chunk_training.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--short-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=25,
|
||||||
|
help="""Chunk length of dynamic training, the chunk size would be either
|
||||||
|
max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-left-chunks",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="How many left context can be seen in chunks when calculating attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--delay-penalty",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="""A constant value to penalize symbol delay, this may be
|
||||||
|
needed when training with time masking, to avoid the time masking
|
||||||
|
encouraging the network to delay symbols.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--return-sym-delay",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to return `sym_delay` during training, this is a stat
|
||||||
|
to measure symbols emission delay, especially for time masking training.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -372,6 +425,10 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|||||||
nhead=params.nhead,
|
nhead=params.nhead,
|
||||||
dim_feedforward=params.dim_feedforward,
|
dim_feedforward=params.dim_feedforward,
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
dynamic_chunk_training=params.dynamic_chunk_training,
|
||||||
|
short_chunk_size=params.short_chunk_size,
|
||||||
|
num_left_chunks=params.num_left_chunks,
|
||||||
|
causal=params.causal_convolution,
|
||||||
)
|
)
|
||||||
return encoder
|
return encoder
|
||||||
|
|
||||||
@ -905,6 +962,15 @@ def run(rank, world_size, args):
|
|||||||
params.blank_id = sp.piece_to_id("<blk>")
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
if params.dynamic_chunk_training:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "dynamic_chunk_training requires causal convolution"
|
||||||
|
else:
|
||||||
|
assert (
|
||||||
|
params.delay_penalty == 0.0
|
||||||
|
), "delay_penalty is intended for dynamic_chunk_training"
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
|
@ -350,6 +350,7 @@ def decode_one_batch(
|
|||||||
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
x=feature,
|
x=feature,
|
||||||
x_lens=feature_lens,
|
x_lens=feature_lens,
|
||||||
|
states=[],
|
||||||
chunk_size=params.right_chunk_size,
|
chunk_size=params.right_chunk_size,
|
||||||
left_context=params.left_context,
|
left_context=params.left_context,
|
||||||
simulate_streaming=True,
|
simulate_streaming=True,
|
||||||
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless/decode_stream.py
|
783
egs/librispeech/ASR/pruned_transducer_stateless4/streaming_decode.py
Executable file
783
egs/librispeech/ASR/pruned_transducer_stateless4/streaming_decode.py
Executable file
@ -0,0 +1,783 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--decoding_method greedy_search \
|
||||||
|
--num-decode-streams 200
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Support only greedy_search and fast_beam_search now.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dynamic-chunk-training",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use dynamic_chunk_training, if you want a streaming
|
||||||
|
model, this requires to be True.
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--short-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=25,
|
||||||
|
help="""Chunk length of dynamic training, the chunk size would be either
|
||||||
|
max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-left-chunks",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""How many left context can be seen in chunks when calculating attention.
|
||||||
|
Note: not needed for decoding, adding it here to construct transducer model,
|
||||||
|
as we reuse the code in train.py.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--causal-convolution",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""Whether to use causal convolution, this requires to be True when
|
||||||
|
using dynamic_chunk_training.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--right-context",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="right context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
streams: List[DecodeStream],
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
assert len(streams) == encoder_out.size(0)
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_out is of shape (N, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# logging.info(f"decoder_out shape : {decoder_out.shape}")
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
streams[i].hyp.append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
hyp_tokens = []
|
||||||
|
for stream in streams:
|
||||||
|
hyp_tokens.append(stream.hyp)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
processed_lens: torch.Tensor,
|
||||||
|
decoding_streams: k2.RnntDecodingStreams,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, joiner_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
|
||||||
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyp_tokens = get_texts(best_path)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
|
||||||
|
rnnt_stream_list = []
|
||||||
|
processed_feature_lens = []
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(
|
||||||
|
(params.decode_chunk_size + 2 + params.right_context)
|
||||||
|
* params.subsampling_factor
|
||||||
|
)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_feature_lens.append(stream.feature_len)
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
rnnt_stream_list.append(stream.rnnt_decoding_stream)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# if T is less than 7 there will be an error in time reduction layer,
|
||||||
|
# because we subsample features with ((x_len - 1) // 2 - 1) // 2
|
||||||
|
tail_length = 15 + params.right_context * params.subsampling_factor
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
feature_lens += tail_length - features.size(1)
|
||||||
|
features = torch.cat(
|
||||||
|
[
|
||||||
|
features,
|
||||||
|
torch.tensor(
|
||||||
|
LOG_EPS, dtype=features.dtype, device=device
|
||||||
|
).expand(
|
||||||
|
features.size(0),
|
||||||
|
tail_length - features.size(1),
|
||||||
|
features.size(2),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = [
|
||||||
|
torch.stack([x[0] for x in states], dim=2),
|
||||||
|
torch.stack([x[1] for x in states], dim=2),
|
||||||
|
]
|
||||||
|
processed_feature_lens = torch.tensor(processed_feature_lens, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=states,
|
||||||
|
left_context=params.left_context,
|
||||||
|
right_context=params.right_context,
|
||||||
|
processed_lens=processed_feature_lens,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp_tokens = greedy_search(model, encoder_out, decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
decoder_history_len=params.context_size,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(rnnt_stream_list, config)
|
||||||
|
processed_lens = processed_feature_lens + encoder_out_lens
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model, encoder_out, processed_lens, decoding_streams
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False
|
||||||
|
|
||||||
|
states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)]
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = [states[0][i], states[1][i]]
|
||||||
|
decode_streams[i].feature_len += encoder_out_lens[i]
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decode_streams[i].hyp = hyp_tokens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 50
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
initial_states = model.get_init_state(params.left_context, device=device)
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params, model, sp, decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(hyp).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(params, model, sp, decode_streams)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(hyp).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
key = "greedy_search"
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=sorted(results))
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
# for streaming
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
params.suffix += f"-right-context-{params.right_context}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(
|
||||||
|
params.exp_dir, iteration=-params.iter
|
||||||
|
)[: params.avg]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(
|
||||||
|
params.exp_dir, iteration=-params.iter
|
||||||
|
)[: params.avg + 1]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_cuts = [test_clean_cuts, test_other_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -125,6 +125,8 @@ class Conformer(Transformer):
|
|||||||
# and throws an error without this change.
|
# and throws an error without this change.
|
||||||
self.after_norm = identity
|
self.after_norm = identity
|
||||||
|
|
||||||
|
self._init_state = torch.jit.Attribute([], List[torch.Tensor])
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
@ -189,6 +191,55 @@ class Conformer(Transformer):
|
|||||||
|
|
||||||
return logits, lengths
|
return logits, lengths
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def get_init_state(
|
||||||
|
self, left_context: int, device: torch.device
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Return the initial cache state of the model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
left_context: The left context size (in frames after subsampling).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return the initial state of the model, it is a list containing two
|
||||||
|
tensors, the first one is the cache for attentions which has a shape
|
||||||
|
of (num_encoder_layers, left_context, encoder_dim), the second one
|
||||||
|
is the cache of conv_modules which has a shape of
|
||||||
|
(num_encoder_layers, cnn_module_kernel - 1, encoder_dim).
|
||||||
|
|
||||||
|
NOTE: the returned tensors are on the given device.
|
||||||
|
"""
|
||||||
|
if (
|
||||||
|
len(self._init_state) == 2
|
||||||
|
and self._init_state[0].size(1) == left_context
|
||||||
|
):
|
||||||
|
# Note: It is OK to share the init state as it is
|
||||||
|
# not going to be modified by the model
|
||||||
|
return self._init_state
|
||||||
|
|
||||||
|
init_states: List[torch.Tensor] = [
|
||||||
|
torch.zeros(
|
||||||
|
(
|
||||||
|
self.encoder_layers,
|
||||||
|
left_context,
|
||||||
|
self.d_model,
|
||||||
|
),
|
||||||
|
device=device,
|
||||||
|
),
|
||||||
|
torch.zeros(
|
||||||
|
(
|
||||||
|
self.encoder_layers,
|
||||||
|
self.cnn_module_kernel - 1,
|
||||||
|
self.d_model,
|
||||||
|
),
|
||||||
|
device=device,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
self._init_state = init_states
|
||||||
|
|
||||||
|
return init_states
|
||||||
|
|
||||||
@torch.jit.export
|
@torch.jit.export
|
||||||
def streaming_forward(
|
def streaming_forward(
|
||||||
self,
|
self,
|
||||||
@ -198,7 +249,7 @@ class Conformer(Transformer):
|
|||||||
chunk_size: int = 16,
|
chunk_size: int = 16,
|
||||||
left_context: int = 64,
|
left_context: int = 64,
|
||||||
simulate_streaming: bool = False,
|
simulate_streaming: bool = False,
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
@ -229,7 +280,7 @@ class Conformer(Transformer):
|
|||||||
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
||||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||||
of frames in `logits` before padding.
|
of frames in `logits` before padding.
|
||||||
- decode_states, the updated DecodeStates including the information
|
- states, the updated states(i.e. caches) including the information
|
||||||
of current chunk.
|
of current chunk.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -265,7 +316,7 @@ class Conformer(Transformer):
|
|||||||
embed, pos_enc = self.encoder_pos(embed, left_context)
|
embed, pos_enc = self.encoder_pos(embed, left_context)
|
||||||
embed = embed.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
embed = embed.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
|
||||||
x = self.encoder.chunk_forward(
|
x, states = self.encoder.chunk_forward(
|
||||||
embed,
|
embed,
|
||||||
pos_enc,
|
pos_enc,
|
||||||
src_key_padding_mask=src_key_padding_mask,
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
@ -304,7 +355,7 @@ class Conformer(Transformer):
|
|||||||
logits = self.encoder_output_layer(x)
|
logits = self.encoder_output_layer(x)
|
||||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
return logits, lengths
|
return logits, lengths, states
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoderLayer(nn.Module):
|
class ConformerEncoderLayer(nn.Module):
|
||||||
@ -461,7 +512,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
src_mask: Optional[Tensor] = None,
|
src_mask: Optional[Tensor] = None,
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
left_context: int = 0,
|
left_context: int = 0,
|
||||||
) -> Tensor:
|
) -> Tuple[Tensor, List[Tensor]]:
|
||||||
"""
|
"""
|
||||||
Pass the input through the encoder layer.
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
@ -471,9 +522,9 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
states:
|
states:
|
||||||
The decode states for previous frames which contains the cached data.
|
The decode states for previous frames which contains the cached data.
|
||||||
It has two elements, the first element is the attn_cache which has
|
It has two elements, the first element is the attn_cache which has
|
||||||
a shape of (encoder_layers, left_context, batch, attention_dim),
|
a shape of (left_context, batch, attention_dim),
|
||||||
the second element is the conv_cache which has a shape of
|
the second element is the conv_cache which has a shape of
|
||||||
(encoder_layers, cnn_module_kernel-1, batch, conv_dim).
|
(cnn_module_kernel-1, batch, conv_dim).
|
||||||
Note: states will be modified in this function.
|
Note: states will be modified in this function.
|
||||||
src_mask: the mask for the src sequence (optional).
|
src_mask: the mask for the src sequence (optional).
|
||||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
@ -503,6 +554,12 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
if self.normalize_before:
|
if self.normalize_before:
|
||||||
src = self.norm_mha(src)
|
src = self.norm_mha(src)
|
||||||
|
|
||||||
|
# We put the attention cache this level (i.e. before linear transformation)
|
||||||
|
# to save memory consumption, when decoding in streaming fashion, the
|
||||||
|
# batch size would be thousands (for 32GB machine), if we cache key & val
|
||||||
|
# separately, it needs extra several GB memory.
|
||||||
|
# TODO(WeiKang): Move cache to self_attn level (i.e. cache key & val
|
||||||
|
# separately) if needed.
|
||||||
key = torch.cat([states[0], src], dim=0)
|
key = torch.cat([states[0], src], dim=0)
|
||||||
val = key
|
val = key
|
||||||
states[0] = key[-left_context:, ...]
|
states[0] = key[-left_context:, ...]
|
||||||
@ -543,7 +600,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
if self.normalize_before:
|
if self.normalize_before:
|
||||||
src = self.norm_final(src)
|
src = self.norm_final(src)
|
||||||
|
|
||||||
return src
|
return src, states
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoder(nn.Module):
|
class ConformerEncoder(nn.Module):
|
||||||
@ -612,7 +669,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
mask: Optional[Tensor] = None,
|
mask: Optional[Tensor] = None,
|
||||||
src_key_padding_mask: Optional[Tensor] = None,
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
left_context: int = 0,
|
left_context: int = 0,
|
||||||
) -> Tensor:
|
) -> Tuple[Tensor, List[Tensor]]:
|
||||||
r"""Pass the input through the encoder layers in turn.
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -643,7 +700,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
|
|
||||||
for layer_index, mod in enumerate(self.layers):
|
for layer_index, mod in enumerate(self.layers):
|
||||||
cache = [states[0][layer_index], states[1][layer_index]]
|
cache = [states[0][layer_index], states[1][layer_index]]
|
||||||
output = mod.chunk_forward(
|
output, cache = mod.chunk_forward(
|
||||||
output,
|
output,
|
||||||
pos_emb,
|
pos_emb,
|
||||||
states=cache,
|
states=cache,
|
||||||
@ -654,7 +711,7 @@ class ConformerEncoder(nn.Module):
|
|||||||
states[0][layer_index] = cache[0]
|
states[0][layer_index] = cache[0]
|
||||||
states[1][layer_index] = cache[1]
|
states[1][layer_index] = cache[1]
|
||||||
|
|
||||||
return output
|
return output, states
|
||||||
|
|
||||||
|
|
||||||
class RelPositionalEncoding(torch.nn.Module):
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user