mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
from local
This commit is contained in:
parent
d65fe17d27
commit
0982e809a3
BIN
egs/librispeech/ASR/.prepare.sh.swp
Normal file
BIN
egs/librispeech/ASR/.prepare.sh.swp
Normal file
Binary file not shown.
@ -0,0 +1,454 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LibriSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_100_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-100 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_360_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-360 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_other_500_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-other-500 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_all_shuf_cuts(self) -> CutSet:
|
||||
logging.info(
|
||||
"About to get the shuffled train-clean-100, \
|
||||
train-clean-360 and train-other-500 cuts"
|
||||
)
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||
)
|
||||
2229
egs/librispeech/ASR/pruned_transducer_stateless_d2v/beam_search.py
Normal file
2229
egs/librispeech/ASR/pruned_transducer_stateless_d2v/beam_search.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,225 @@
|
||||
# Copyright 2021-2022 Xiaomi Corporation (authors: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
|
||||
# use duck typing for LRScheduler since we have different possibilities, see
|
||||
# our class LRScheduler.
|
||||
LRSchedulerType = object
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
filename: Path,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer = None,
|
||||
scheduler = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save training information to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
The checkpoint filename.
|
||||
model:
|
||||
The model to be saved. We only save its `state_dict()`.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
User defined parameters, e.g., epoch, loss.
|
||||
optimizer:
|
||||
The optimizer to be saved. We only save its `state_dict()`.
|
||||
scheduler:
|
||||
The scheduler to be saved. We only save its `state_dict()`.
|
||||
scalar:
|
||||
The GradScaler to be saved. We only save its `state_dict()`.
|
||||
rank:
|
||||
Used in DDP. We save checkpoint only for the node whose rank is 0.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
|
||||
logging.info(f"Saving checkpoint to {filename}")
|
||||
|
||||
if isinstance(model, DDP):
|
||||
model = model.module
|
||||
|
||||
if type(optimizer) == list:
|
||||
checkpoint = {
|
||||
"model": model.state_dict(),
|
||||
"optimizer_enc": optimizer[0].state_dict() if optimizer is not None else None,
|
||||
"optimizer_dec": optimizer[1].state_dict() if optimizer is not None else None,
|
||||
"scheduler_enc": scheduler[0].state_dict() if scheduler is not None else None,
|
||||
"scheduler_dec": scheduler[1].state_dict() if scheduler is not None else None,
|
||||
"grad_scaler": scaler.state_dict() if scaler is not None else None,
|
||||
"sampler": sampler.state_dict() if sampler is not None else None,
|
||||
}
|
||||
else:
|
||||
checkpoint = {
|
||||
"model": model.state_dict(),
|
||||
"optimizer": optimizer.state_dict() if optimizer is not None else None,
|
||||
"scheduler": scheduler.state_dict() if scheduler is not None else None,
|
||||
"grad_scaler": scaler.state_dict() if scaler is not None else None,
|
||||
"sampler": sampler.state_dict() if sampler is not None else None,
|
||||
}
|
||||
|
||||
|
||||
if model_avg is not None:
|
||||
checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict()
|
||||
|
||||
if params:
|
||||
for k, v in params.items():
|
||||
assert k not in checkpoint
|
||||
checkpoint[k] = v
|
||||
|
||||
torch.save(checkpoint, filename)
|
||||
|
||||
|
||||
def load_checkpoint(
|
||||
filename: Path,
|
||||
model: nn.Module,
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
optimizer = None,
|
||||
scheduler = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
strict: bool = True,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
TODO: document it
|
||||
"""
|
||||
logging.info(f"Loading checkpoint from {filename}")
|
||||
checkpoint = torch.load(filename, map_location="cpu")
|
||||
|
||||
if next(iter(checkpoint["model"])).startswith("module."):
|
||||
logging.info("Loading checkpoint saved by DDP")
|
||||
|
||||
dst_state_dict = model.state_dict()
|
||||
src_state_dict = checkpoint["model"]
|
||||
for key in dst_state_dict.keys():
|
||||
src_key = "{}.{}".format("module", key)
|
||||
dst_state_dict[key] = src_state_dict.pop(src_key)
|
||||
assert len(src_state_dict) == 0
|
||||
model.load_state_dict(dst_state_dict, strict=strict)
|
||||
else:
|
||||
model.load_state_dict(checkpoint["model"], strict=strict)
|
||||
|
||||
checkpoint.pop("model")
|
||||
|
||||
if model_avg is not None and "model_avg" in checkpoint:
|
||||
logging.info("Loading averaged model")
|
||||
model_avg.load_state_dict(checkpoint["model_avg"], strict=strict)
|
||||
checkpoint.pop("model_avg")
|
||||
|
||||
def load(name, obj):
|
||||
s = checkpoint.get(name, None)
|
||||
if obj and s:
|
||||
obj.load_state_dict(s)
|
||||
checkpoint.pop(name)
|
||||
|
||||
if type(optimizer) == list:
|
||||
load("optimizer_enc", optimizer[0])
|
||||
load("optimizer_dec", optimizer[1])
|
||||
load("scheduler_enc", scheduler[0])
|
||||
load("scheduler_dec", scheduler[1])
|
||||
else:
|
||||
load("optimizer", optimizer)
|
||||
load("scheduler", scheduler)
|
||||
|
||||
load("grad_scaler", scaler)
|
||||
load("sampler", sampler)
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def save_checkpoint_with_global_batch_idx(
|
||||
out_dir: Path,
|
||||
global_batch_idx: int,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer = None,
|
||||
scheduler = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
rank: int = 0,
|
||||
):
|
||||
"""Save training info after processing given number of batches.
|
||||
|
||||
Args:
|
||||
out_dir:
|
||||
The directory to save the checkpoint.
|
||||
global_batch_idx:
|
||||
The number of batches processed so far from the very start of the
|
||||
training. The saved checkpoint will have the following filename:
|
||||
|
||||
f'out_dir / checkpoint-{global_batch_idx}.pt'
|
||||
model:
|
||||
The neural network model whose `state_dict` will be saved in the
|
||||
checkpoint.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
A dict of training configurations to be saved.
|
||||
optimizer:
|
||||
The optimizer used in the training. Its `state_dict` will be saved.
|
||||
scheduler:
|
||||
The learning rate scheduler used in the training. Its `state_dict` will
|
||||
be saved.
|
||||
scaler:
|
||||
The scaler used for mix precision training. Its `state_dict` will
|
||||
be saved.
|
||||
sampler:
|
||||
The sampler used in the training dataset.
|
||||
rank:
|
||||
The rank ID used in DDP training of the current node. Set it to 0
|
||||
if DDP is not used.
|
||||
"""
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
filename = out_dir / f"checkpoint-{global_batch_idx}.pt"
|
||||
save_checkpoint(
|
||||
filename=filename,
|
||||
model=model,
|
||||
model_avg=model_avg,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
scaler=scaler,
|
||||
sampler=sampler,
|
||||
rank=rank,
|
||||
)
|
||||
1809
egs/librispeech/ASR/pruned_transducer_stateless_d2v/conformer.py
Normal file
1809
egs/librispeech/ASR/pruned_transducer_stateless_d2v/conformer.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,199 @@
|
||||
# Copyright 2021 Xuankai Chang
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Encoder definition."""
|
||||
import contextlib
|
||||
import time
|
||||
import copy
|
||||
import math
|
||||
import logging
|
||||
import os
|
||||
from typing import List, Optional, Tuple
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from filelock import FileLock
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from nets_utils import make_pad_mask
|
||||
from encoder_interface import EncoderInterface
|
||||
from scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv1d,
|
||||
ScaledConv2d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from torch import Tensor, nn
|
||||
|
||||
from icefall.utils import make_pad_mask, subsequent_chunk_mask
|
||||
|
||||
|
||||
class FairSeqData2VecEncoder(EncoderInterface):
|
||||
"""FairSeq Wav2Vec2 encoder module.
|
||||
|
||||
Args:
|
||||
input_size: input dim
|
||||
output_size: dimension of attention
|
||||
w2v_url: url to Wav2Vec2.0 pretrained model
|
||||
w2v_dir_path: directory to download the Wav2Vec2.0 pretrained model.
|
||||
normalize_before: whether to use layer_norm before the first block
|
||||
finetune_last_n_layers: last n layers to be finetuned in Wav2Vec2.0
|
||||
0 means to finetune every layer if freeze_w2v=False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
w2v_url: str,
|
||||
w2v_dir_path: str = "./",
|
||||
output_size: int = 256,
|
||||
freeze_finetune_updates: int = 0,
|
||||
additional_block: bool = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
|
||||
if w2v_url != "":
|
||||
try:
|
||||
import fairseq
|
||||
from fairseq.models.wav2vec.wav2vec2 import Wav2Vec2Model
|
||||
except Exception as e:
|
||||
print("Error: FairSeq is not properly installed.")
|
||||
print(
|
||||
"Please install FairSeq: cd ${MAIN_ROOT}/tools && make fairseq.done"
|
||||
)
|
||||
raise e
|
||||
|
||||
if os.path.exists('/home/work/workspace/models/data2vec_model/audio_base_ls.pt'):
|
||||
self.w2v_model_path = '/home/work/workspace/models/data2vec_model/audio_base_ls.pt'
|
||||
if os.path.exists('./models/audio_base_ls.pt'):
|
||||
self.w2v_model_path = './models/audio_base_ls.pt'
|
||||
|
||||
self._output_size = output_size
|
||||
|
||||
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
||||
[self.w2v_model_path],
|
||||
strict=False,
|
||||
)
|
||||
model = models[0]
|
||||
model.feature_grad_mult = 0.0 ## for conv network freeze
|
||||
#model.mask_prob = 0.3 ## for conv network freeze
|
||||
|
||||
if not isinstance(model, Wav2Vec2Model):
|
||||
try:
|
||||
model = model.w2v_encoder.w2v_model
|
||||
|
||||
except:
|
||||
print(
|
||||
"using data2vec ..."
|
||||
)
|
||||
|
||||
self.encoders = model
|
||||
self.pretrained_params = copy.deepcopy(model.state_dict())
|
||||
|
||||
if model.cfg.encoder_embed_dim != output_size or additional_block:
|
||||
# TODO(xkc09): try LSTM
|
||||
self.output_layer = torch.nn.Sequential(
|
||||
torch.nn.Linear(model.cfg.encoder_embed_dim, output_size),
|
||||
torch.nn.LayerNorm(output_size),
|
||||
torch.nn.GELU(),
|
||||
)
|
||||
else:
|
||||
self.output_layer = None
|
||||
|
||||
self.freeze_finetune_updates = freeze_finetune_updates
|
||||
self.num_updates = 0
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
warmup = None,
|
||||
prev_states: torch.Tensor = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
xs_pad = x
|
||||
ilens = x_lens
|
||||
"""Forward FairSeqWav2Vec2 Encoder.
|
||||
|
||||
Args:
|
||||
xs_pad: input tensor (B, L, D)
|
||||
ilens: input length (B)
|
||||
prev_states: Not to be used now.
|
||||
Returns:
|
||||
position embedded tensor and mask
|
||||
"""
|
||||
with torch.no_grad():
|
||||
xs_pad = torch.nn.functional.layer_norm(xs_pad, xs_pad.shape)
|
||||
|
||||
masks = make_pad_mask(ilens).to(xs_pad.device)
|
||||
|
||||
ft = (self.freeze_finetune_updates <= self.num_updates) and self.encoders.training
|
||||
if self.num_updates <= self.freeze_finetune_updates:
|
||||
self.num_updates += 1
|
||||
elif ft and self.num_updates == self.freeze_finetune_updates + 1:
|
||||
self.num_updates += 1
|
||||
logging.info("Start fine-tuning wav2vec parameters!")
|
||||
|
||||
with torch.no_grad() if not ft else contextlib.nullcontext():
|
||||
enc_outputs = self.encoders(
|
||||
xs_pad,
|
||||
masks,
|
||||
mask = ft,
|
||||
features_only=True,
|
||||
)
|
||||
|
||||
xs_pad = enc_outputs["x"] # (B,T,C),
|
||||
bs = xs_pad.shape[0]
|
||||
if enc_outputs["padding_mask"] is not None:
|
||||
masks = enc_outputs["padding_mask"] # (B, T)
|
||||
olens = (~masks).sum(dim=1) # (B)
|
||||
else:
|
||||
olens = torch.IntTensor([xs_pad.shape[1]]).repeat(bs).to(xs_pad.device)
|
||||
|
||||
if self.output_layer is not None:
|
||||
xs_pad = self.output_layer(xs_pad)
|
||||
|
||||
return xs_pad, olens
|
||||
|
||||
def reload_pretrained_parameters(self):
|
||||
self.encoders.load_state_dict(self.pretrained_params)
|
||||
logging.info("Pretrained Wav2Vec model parameters reloaded!")
|
||||
|
||||
|
||||
def download_w2v(model_url, dir_path):
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
model_name = model_url.split("/")[-1]
|
||||
model_path = os.path.join(dir_path, model_name)
|
||||
|
||||
dict_url = "https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt"
|
||||
dict_path = os.path.join(dir_path, dict_url.split("/")[-1])
|
||||
|
||||
with FileLock(model_path + ".lock"):
|
||||
if not os.path.exists(model_path):
|
||||
torch.hub.download_url_to_file(model_url, model_path)
|
||||
torch.hub.download_url_to_file(dict_url, dict_path)
|
||||
logging.info(f"Wav2Vec model downloaded {model_path}")
|
||||
else:
|
||||
logging.info(f"Wav2Vec model {model_path} already exists.")
|
||||
|
||||
return model_path
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
d2v = FairSeqData2VecEncoder(input_size=768, w2v_url='ww', output_size=768)
|
||||
inputs = torch.randn([1, 211564])
|
||||
#a = torch.ones([1000]
|
||||
#b = torch.ones([10000])
|
||||
#c = torch.ones([10000])
|
||||
length = torch.tensor([211564])
|
||||
outputs = d2v(inputs, length)
|
||||
print(outputs[0].size())
|
||||
|
||||
#for n, p in d2v.named_parameters():
|
||||
# print(n)
|
||||
989
egs/librispeech/ASR/pruned_transducer_stateless_d2v/decode.py
Executable file
989
egs/librispeech/ASR/pruned_transducer_stateless_d2v/decode.py
Executable file
@ -0,0 +1,989 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
(2) beam search (not recommended)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
(7) fast beam search (with LG)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(8) modified beam search with RNNLM shallow fusion (with LG)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless5/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_LG
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search, fast_beam_search_LG,
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_nbest_LG and fast_beam_search_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decode-chunk-size",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The chunk size for decoding (in frames after subsampling)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--left-context",
|
||||
type=int,
|
||||
default=64,
|
||||
help="left context can be seen during decoding (in frames after subsampling)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is fast_beam_search_LG,
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is fast_beam_search_LG,
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simulate-streaming",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||
test a streaming model.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is modified_beam_search_rnnlm_shallow_fusion.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 2, feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
if feature.ndim == 2:
|
||||
feature_lens = []
|
||||
for supervision in supervisions['cut']:
|
||||
try: feature_lens.append(supervision.tracks[0].cut.recording.num_samples)
|
||||
except: feature_lens.append(supervision.recording.num_samples)
|
||||
feature_lens = torch.tensor(feature_lens).to(device)
|
||||
|
||||
elif feature.ndim == 3:
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.simulate_streaming:
|
||||
feature_lens += params.left_context
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, params.left_context),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
chunk_size=params.decode_chunk_size,
|
||||
left_context=params.left_context,
|
||||
simulate_streaming=True,
|
||||
)
|
||||
else:
|
||||
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||
|
||||
hyps = []
|
||||
|
||||
if (
|
||||
params.decoding_method == "fast_beam_search"
|
||||
or params.decoding_method == "fast_beam_search_LG"
|
||||
):
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
hyp_tokens = fast_beam_search_nbest_LG(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
elif params.decoding_method == "fast_beam_search_nbest":
|
||||
hyp_tokens = fast_beam_search_nbest(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=sp.encode(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
|
||||
texts = supervisions["text"]
|
||||
#for enum, text in enumerate(texts):
|
||||
logging.info(f"ref: {texts[0]}")
|
||||
logging.info(f"hyp: {' '.join(hyps[0])}")
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key = f"beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
logging.info(f"Decoding {batch_idx}-th batch")
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_LG",
|
||||
"fast_beam_search_nbest",
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_rnnlm_shallow_fusion",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
if params.simulate_streaming:
|
||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context}"
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
if params.simulate_streaming:
|
||||
assert (
|
||||
params.causal_convolution
|
||||
), "Decoding in streaming requires causal convolution"
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = params.rnn_lm_scale
|
||||
if params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
assert params.rnn_lm_avg == 1
|
||||
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if "LG" in params.decoding_method:
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
word_table = lexicon.word_table
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
word_table = None
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
word_table = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
#test_clean_cuts = librispeech.train_clean_100_cuts()
|
||||
#test_other_cuts = librispeech.train_clean_100_cuts()
|
||||
|
||||
#test_clean_dl = librispeech.train_dataloaders(test_clean_cuts)
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnn_lm_scale,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -0,0 +1,146 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from beam_search import Hypothesis, HypothesisList
|
||||
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
class DecodeStream(object):
|
||||
def __init__(
|
||||
self,
|
||||
params: AttributeDict,
|
||||
cut_id: str,
|
||||
initial_states: List[torch.Tensor],
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
initial_states:
|
||||
Initial decode states of the model, e.g. the return value of
|
||||
`get_init_state` in conformer.py
|
||||
decoding_graph:
|
||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||
Used only when decoding_method is fast_beam_search.
|
||||
device:
|
||||
The device to run this stream.
|
||||
"""
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
assert decoding_graph is not None
|
||||
assert device == decoding_graph.device
|
||||
|
||||
self.params = params
|
||||
self.cut_id = cut_id
|
||||
self.LOG_EPS = math.log(1e-10)
|
||||
|
||||
self.states = initial_states
|
||||
|
||||
# It contains a 2-D tensors representing the feature frames.
|
||||
self.features: torch.Tensor = None
|
||||
|
||||
self.num_frames: int = 0
|
||||
# how many frames have been processed. (before subsampling).
|
||||
# we only modify this value in `func:get_feature_frames`.
|
||||
self.num_processed_frames: int = 0
|
||||
|
||||
self._done: bool = False
|
||||
|
||||
# The transcript of current utterance.
|
||||
self.ground_truth: str = ""
|
||||
|
||||
# The decoding result (partial or final) of current utterance.
|
||||
self.hyp: List = []
|
||||
|
||||
# how many frames have been processed, after subsampling (i.e. a
|
||||
# cumulative sum of the second return value of
|
||||
# encoder.streaming_forward
|
||||
self.done_frames: int = 0
|
||||
|
||||
self.pad_length = (params.right_context + 2) * params.subsampling_factor + 3
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
self.hyp = [params.blank_id] * params.context_size
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
self.hyps = HypothesisList()
|
||||
self.hyps.add(
|
||||
Hypothesis(
|
||||
ys=[params.blank_id] * params.context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
)
|
||||
)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
# The rnnt_decoding_stream for fast_beam_search.
|
||||
self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream(
|
||||
decoding_graph
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
@property
|
||||
def done(self) -> bool:
|
||||
"""Return True if all the features are processed."""
|
||||
return self._done
|
||||
|
||||
@property
|
||||
def id(self) -> str:
|
||||
return self.cut_id
|
||||
|
||||
def set_features(
|
||||
self,
|
||||
features: torch.Tensor,
|
||||
) -> None:
|
||||
"""Set features tensor of current utterance."""
|
||||
assert features.dim() == 2, features.dim()
|
||||
self.features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, self.pad_length),
|
||||
mode="constant",
|
||||
value=self.LOG_EPS,
|
||||
)
|
||||
self.num_frames = self.features.size(0)
|
||||
|
||||
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
||||
"""Consume chunk_size frames of features"""
|
||||
chunk_length = chunk_size + self.pad_length
|
||||
|
||||
ret_length = min(self.num_frames - self.num_processed_frames, chunk_length)
|
||||
|
||||
ret_features = self.features[
|
||||
self.num_processed_frames : self.num_processed_frames + ret_length # noqa
|
||||
]
|
||||
|
||||
self.num_processed_frames += chunk_size
|
||||
if self.num_processed_frames >= self.num_frames:
|
||||
self._done = True
|
||||
|
||||
return ret_features, ret_length
|
||||
|
||||
def decoding_result(self) -> List[int]:
|
||||
"""Obtain current decoding result."""
|
||||
if self.params.decoding_method == "greedy_search":
|
||||
return self.hyp[self.params.context_size :] # noqa
|
||||
elif self.params.decoding_method == "modified_beam_search":
|
||||
best_hyp = self.hyps.get_most_probable(length_norm=True)
|
||||
return best_hyp.ys[self.params.context_size :] # noqa
|
||||
else:
|
||||
assert self.params.decoding_method == "fast_beam_search"
|
||||
return self.hyp
|
||||
123
egs/librispeech/ASR/pruned_transducer_stateless_d2v/decoder.py
Normal file
123
egs/librispeech/ASR/pruned_transducer_stateless_d2v/decoder.py
Normal file
@ -0,0 +1,123 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from scaling import ScaledConv1d, ScaledEmbedding
|
||||
|
||||
from icefall.utils import is_jit_tracing
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""This class modifies the stateless decoder from the following paper:
|
||||
|
||||
RNN-transducer with stateless prediction network
|
||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||
|
||||
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||
network. Different from the above paper, it adds an extra Conv1d
|
||||
right after the embedding layer.
|
||||
|
||||
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
decoder_dim: int,
|
||||
blank_id: int,
|
||||
context_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Number of tokens of the modeling unit including blank.
|
||||
decoder_dim:
|
||||
Dimension of the input embedding, and of the decoder output.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
context_size:
|
||||
Number of previous words to use to predict the next word.
|
||||
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.embedding = ScaledEmbedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=decoder_dim,
|
||||
padding_idx=blank_id,
|
||||
)
|
||||
self.blank_id = blank_id
|
||||
|
||||
assert context_size >= 1, context_size
|
||||
self.context_size = context_size
|
||||
self.vocab_size = vocab_size
|
||||
if context_size > 1:
|
||||
self.conv = ScaledConv1d(
|
||||
in_channels=decoder_dim,
|
||||
out_channels=decoder_dim,
|
||||
kernel_size=context_size,
|
||||
padding=0,
|
||||
groups=decoder_dim,
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
# It is to support torch script
|
||||
self.conv = nn.Identity()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
y: torch.Tensor,
|
||||
need_pad: bool = True # Annotation should be Union[bool, torch.Tensor]
|
||||
# but, torch.jit.script does not support Union.
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, U).
|
||||
need_pad:
|
||||
True to left pad the input. Should be True during training.
|
||||
False to not pad the input. Should be False during inference.
|
||||
Returns:
|
||||
Return a tensor of shape (N, U, decoder_dim).
|
||||
"""
|
||||
if isinstance(need_pad, torch.Tensor):
|
||||
# This is for torch.jit.trace(), which cannot handle the case
|
||||
# when the input argument is not a tensor.
|
||||
need_pad = bool(need_pad)
|
||||
|
||||
y = y.to(torch.int64)
|
||||
# this stuff about clamp() is a temporary fix for a mismatch
|
||||
# at utterance start, we use negative ids in beam_search.py
|
||||
if torch.jit.is_tracing():
|
||||
# This is for exporting to PNNX via ONNX
|
||||
embedding_out = self.embedding(y)
|
||||
else:
|
||||
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
|
||||
if self.context_size > 1:
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
if need_pad:
|
||||
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
|
||||
else:
|
||||
# During inference time, there is no need to do extra padding
|
||||
# as we only need one output
|
||||
if not is_jit_tracing():
|
||||
assert embedding_out.size(-1) == self.context_size
|
||||
embedding_out = self.conv(embedding_out)
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
embedding_out = F.relu(embedding_out)
|
||||
return embedding_out
|
||||
@ -0,0 +1,43 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class EncoderInterface(nn.Module):
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||
containing the input features.
|
||||
x_lens:
|
||||
A tensor of shape (batch_size,) containing the number of frames
|
||||
in `x` before padding.
|
||||
Returns:
|
||||
Return a tuple containing two tensors:
|
||||
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||
containing unnormalized probabilities, i.e., the output of a
|
||||
linear layer.
|
||||
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||
the number of frames in `encoder_out` before padding.
|
||||
"""
|
||||
raise NotImplementedError("Please implement it in a subclass")
|
||||
287
egs/librispeech/ASR/pruned_transducer_stateless_d2v/export.py
Executable file
287
egs/librispeech/ASR/pruned_transducer_stateless_d2v/export.py
Executable file
@ -0,0 +1,287 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless5/export.py \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `pruned_transducer_stateless5/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless5/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--streaming-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Whether to export a streaming model, if the models in exp-dir
|
||||
are streaming model, this should be True.
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
if params.streaming_model:
|
||||
assert params.causal_convolution
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from scaling import ScaledLinear
|
||||
|
||||
from icefall.utils import is_jit_tracing
|
||||
|
||||
|
||||
class Joiner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
encoder_dim: int,
|
||||
decoder_dim: int,
|
||||
joiner_dim: int,
|
||||
vocab_size: int,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim)
|
||||
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
|
||||
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
decoder_out: torch.Tensor,
|
||||
project_input: bool = True,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, s_range, C).
|
||||
decoder_out:
|
||||
Output from the decoder. Its shape is (N, T, s_range, C).
|
||||
project_input:
|
||||
If true, apply input projections encoder_proj and decoder_proj.
|
||||
If this is false, it is the user's responsibility to do this
|
||||
manually.
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, s_range, C).
|
||||
"""
|
||||
if not is_jit_tracing():
|
||||
assert encoder_out.ndim == decoder_out.ndim
|
||||
assert encoder_out.ndim in (2, 4)
|
||||
assert encoder_out.shape == decoder_out.shape
|
||||
|
||||
if project_input:
|
||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
||||
else:
|
||||
logit = encoder_out + decoder_out
|
||||
|
||||
logit = self.output_linear(torch.tanh(logit))
|
||||
|
||||
return logit
|
||||
102
egs/librispeech/ASR/pruned_transducer_stateless_d2v/lstmp.py
Normal file
102
egs/librispeech/ASR/pruned_transducer_stateless_d2v/lstmp.py
Normal file
@ -0,0 +1,102 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class LSTMP(nn.Module):
|
||||
"""LSTM with projection.
|
||||
|
||||
PyTorch does not support exporting LSTM with projection to ONNX.
|
||||
This class reimplements LSTM with projection using basic matrix-matrix
|
||||
and matrix-vector operations. It is not intended for training.
|
||||
"""
|
||||
|
||||
def __init__(self, lstm: nn.LSTM):
|
||||
"""
|
||||
Args:
|
||||
lstm:
|
||||
LSTM with proj_size. We support only uni-directional,
|
||||
1-layer LSTM with projection at present.
|
||||
"""
|
||||
super().__init__()
|
||||
assert lstm.bidirectional is False, lstm.bidirectional
|
||||
assert lstm.num_layers == 1, lstm.num_layers
|
||||
assert 0 < lstm.proj_size < lstm.hidden_size, (
|
||||
lstm.proj_size,
|
||||
lstm.hidden_size,
|
||||
)
|
||||
|
||||
assert lstm.batch_first is False, lstm.batch_first
|
||||
|
||||
state_dict = lstm.state_dict()
|
||||
|
||||
w_ih = state_dict["weight_ih_l0"]
|
||||
w_hh = state_dict["weight_hh_l0"]
|
||||
|
||||
b_ih = state_dict["bias_ih_l0"]
|
||||
b_hh = state_dict["bias_hh_l0"]
|
||||
|
||||
w_hr = state_dict["weight_hr_l0"]
|
||||
self.input_size = lstm.input_size
|
||||
self.proj_size = lstm.proj_size
|
||||
self.hidden_size = lstm.hidden_size
|
||||
|
||||
self.w_ih = w_ih
|
||||
self.w_hh = w_hh
|
||||
self.b = b_ih + b_hh
|
||||
self.w_hr = w_hr
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input: torch.Tensor,
|
||||
hx: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
input:
|
||||
A tensor of shape [T, N, hidden_size]
|
||||
hx:
|
||||
A tuple containing:
|
||||
- h0: a tensor of shape (1, N, proj_size)
|
||||
- c0: a tensor of shape (1, N, hidden_size)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- output: a tensor of shape (T, N, proj_size).
|
||||
- A tuple containing:
|
||||
- h: a tensor of shape (1, N, proj_size)
|
||||
- c: a tensor of shape (1, N, hidden_size)
|
||||
|
||||
"""
|
||||
x_list = input.unbind(dim=0) # We use batch_first=False
|
||||
|
||||
if hx is not None:
|
||||
h0, c0 = hx
|
||||
else:
|
||||
h0 = torch.zeros(1, input.size(1), self.proj_size)
|
||||
c0 = torch.zeros(1, input.size(1), self.hidden_size)
|
||||
h0 = h0.squeeze(0)
|
||||
c0 = c0.squeeze(0)
|
||||
y_list = []
|
||||
for x in x_list:
|
||||
gates = F.linear(x, self.w_ih, self.b) + F.linear(h0, self.w_hh)
|
||||
i, f, g, o = gates.chunk(4, dim=1)
|
||||
|
||||
i = i.sigmoid()
|
||||
f = f.sigmoid()
|
||||
g = g.tanh()
|
||||
o = o.sigmoid()
|
||||
|
||||
c = f * c0 + i * g
|
||||
h = o * c.tanh()
|
||||
|
||||
h = F.linear(h, self.w_hr)
|
||||
y_list.append(h)
|
||||
|
||||
c0 = c
|
||||
h0 = h
|
||||
|
||||
y = torch.stack(y_list, dim=0)
|
||||
|
||||
return y, (h0.unsqueeze(0), c0.unsqueeze(0))
|
||||
280
egs/librispeech/ASR/pruned_transducer_stateless_d2v/model.py
Normal file
280
egs/librispeech/ASR/pruned_transducer_stateless_d2v/model.py
Normal file
@ -0,0 +1,280 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from scaling import ScaledLinear
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: EncoderInterface,
|
||||
decoder: nn.Module,
|
||||
joiner: nn.Module,
|
||||
encoder_dim: int,
|
||||
decoder_dim: int,
|
||||
joiner_dim: int,
|
||||
vocab_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
It is the transcription network in the paper. Its accepts
|
||||
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||
`logit_lens` of shape (N,).
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||
It should contain one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, encoder_dim) and
|
||||
(N, U, decoder_dim).
|
||||
Its output shape is (N, T, U, vocab_size). Note that its output
|
||||
contains unnormalized probs, i.e., not processed by log-softmax.
|
||||
"""
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5)
|
||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
prune_range: int = 5,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
warmup: float = 1.0,
|
||||
reduction: str = "sum",
|
||||
delay_penalty: float = 0.0,
|
||||
print_tensor: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
warmup:
|
||||
A value warmup >= 0 that determines which modules are active, values
|
||||
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||
reduction:
|
||||
"sum" to sum the losses over all utterances in the batch.
|
||||
"none" to return the loss in a 1-D tensor for each utterance
|
||||
in the batch.
|
||||
delay_penalty:
|
||||
A constant value used to penalize symbol delay, to encourage
|
||||
streaming models to emit symbols earlier.
|
||||
See https://github.com/k2-fsa/k2/issues/955 and
|
||||
https://arxiv.org/pdf/2211.00490.pdf for more details.
|
||||
Returns:
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
|
||||
Note:
|
||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||
the form:
|
||||
lm_scale * lm_probs + am_scale * am_probs +
|
||||
(1-lm_scale-am_scale) * combined_probs
|
||||
"""
|
||||
assert reduction in ("sum", "none"), reduction
|
||||
assert x.ndim == 2 or x.ndim == 3, x.shape
|
||||
assert x_lens.ndim == 1, x_lens.shape
|
||||
assert y.num_axes == 2, y.num_axes
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||
|
||||
#encoder_out *= 100
|
||||
|
||||
assert torch.all(x_lens > 0)
|
||||
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = x_lens
|
||||
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
|
||||
if encoder_out.get_device() == 0 and 0:
|
||||
print('encoder out = ', encoder_out)
|
||||
print('encoder size = ', encoder_out.size())
|
||||
|
||||
print('am = ', am)
|
||||
print('am size = ', am.size())
|
||||
|
||||
print('sos y padded = ', sos_y_padded)
|
||||
print('sos y padded size = ', sos_y_padded.size())
|
||||
|
||||
print('decoder out = ', decoder_out)
|
||||
print('decoder size = ', decoder_out.size())
|
||||
|
||||
print('lm = ', lm)
|
||||
print('lm size = ', lm.size())
|
||||
|
||||
print('\n\n\n\n\n')
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=lm.float(),
|
||||
am=am.float(),
|
||||
symbols=y_padded,
|
||||
termination_symbol=blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=boundary,
|
||||
reduction=reduction,
|
||||
delay_penalty=delay_penalty,
|
||||
return_grad=True,
|
||||
)
|
||||
#print('1. simple loss = ', simple_loss)
|
||||
#print('2. px_grad = ', px_grad)
|
||||
#print('3. py_grad = ', py_grad)
|
||||
|
||||
# ranges : [B, T, prune_range]
|
||||
ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=px_grad,
|
||||
py_grad=py_grad,
|
||||
boundary=boundary,
|
||||
s_range=prune_range,
|
||||
)
|
||||
|
||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.joiner.encoder_proj(encoder_out),
|
||||
lm=self.joiner.decoder_proj(decoder_out),
|
||||
ranges=ranges,
|
||||
)
|
||||
|
||||
# logits : [B, T, prune_range, vocab_size]
|
||||
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits.float(),
|
||||
symbols=y_padded,
|
||||
ranges=ranges,
|
||||
termination_symbol=blank_id,
|
||||
boundary=boundary,
|
||||
delay_penalty=delay_penalty,
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
return (simple_loss, pruned_loss)
|
||||
|
||||
def decode(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
sp,
|
||||
):
|
||||
from beam_search import greedy_search_batch, greedy_search_batch_target_input
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
encoder_out, x_lens = self.encoder(x, x_lens)
|
||||
|
||||
assert torch.all(x_lens > 0)
|
||||
|
||||
'''
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = x_lens
|
||||
'''
|
||||
|
||||
hyps = []
|
||||
#hyp_tokens = greedy_search_batch_target_input(self, encoder_out, x_lens, decoder_out)
|
||||
hyp_tokens = greedy_search_batch(self, encoder_out, x_lens)#, decoder_out)
|
||||
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
|
||||
return hyps
|
||||
@ -0,0 +1,503 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""Network related utility tools."""
|
||||
|
||||
import logging
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def to_device(m, x):
|
||||
"""Send tensor into the device of the module.
|
||||
|
||||
Args:
|
||||
m (torch.nn.Module): Torch module.
|
||||
x (Tensor): Torch tensor.
|
||||
|
||||
Returns:
|
||||
Tensor: Torch tensor located in the same place as torch module.
|
||||
|
||||
"""
|
||||
if isinstance(m, torch.nn.Module):
|
||||
device = next(m.parameters()).device
|
||||
elif isinstance(m, torch.Tensor):
|
||||
device = m.device
|
||||
else:
|
||||
raise TypeError(
|
||||
"Expected torch.nn.Module or torch.tensor, " f"bot got: {type(m)}"
|
||||
)
|
||||
return x.to(device)
|
||||
|
||||
|
||||
def pad_list(xs, pad_value):
|
||||
"""Perform padding for the list of tensors.
|
||||
|
||||
Args:
|
||||
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
||||
pad_value (float): Value for padding.
|
||||
|
||||
Returns:
|
||||
Tensor: Padded tensor (B, Tmax, `*`).
|
||||
|
||||
Examples:
|
||||
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
||||
>>> x
|
||||
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
||||
>>> pad_list(x, 0)
|
||||
tensor([[1., 1., 1., 1.],
|
||||
[1., 1., 0., 0.],
|
||||
[1., 0., 0., 0.]])
|
||||
|
||||
"""
|
||||
n_batch = len(xs)
|
||||
max_len = max(x.size(0) for x in xs)
|
||||
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
|
||||
|
||||
for i in range(n_batch):
|
||||
pad[i, : xs[i].size(0)] = xs[i]
|
||||
|
||||
return pad
|
||||
|
||||
|
||||
def make_pad_mask(lengths, xs=None, length_dim=-1, maxlen=None):
|
||||
"""Make mask tensor containing indices of padded part.
|
||||
|
||||
Args:
|
||||
lengths (LongTensor or List): Batch of lengths (B,).
|
||||
xs (Tensor, optional): The reference tensor.
|
||||
If set, masks will be the same shape as this tensor.
|
||||
length_dim (int, optional): Dimension indicator of the above tensor.
|
||||
See the example.
|
||||
|
||||
Returns:
|
||||
Tensor: Mask tensor containing indices of padded part.
|
||||
dtype=torch.uint8 in PyTorch 1.2-
|
||||
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
||||
|
||||
Examples:
|
||||
With only lengths.
|
||||
|
||||
>>> lengths = [5, 3, 2]
|
||||
>>> make_pad_mask(lengths)
|
||||
masks = [[0, 0, 0, 0 ,0],
|
||||
[0, 0, 0, 1, 1],
|
||||
[0, 0, 1, 1, 1]]
|
||||
|
||||
With the reference tensor.
|
||||
|
||||
>>> xs = torch.zeros((3, 2, 4))
|
||||
>>> make_pad_mask(lengths, xs)
|
||||
tensor([[[0, 0, 0, 0],
|
||||
[0, 0, 0, 0]],
|
||||
[[0, 0, 0, 1],
|
||||
[0, 0, 0, 1]],
|
||||
[[0, 0, 1, 1],
|
||||
[0, 0, 1, 1]]], dtype=torch.uint8)
|
||||
>>> xs = torch.zeros((3, 2, 6))
|
||||
>>> make_pad_mask(lengths, xs)
|
||||
tensor([[[0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 1]],
|
||||
[[0, 0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1]],
|
||||
[[0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
|
||||
|
||||
With the reference tensor and dimension indicator.
|
||||
|
||||
>>> xs = torch.zeros((3, 6, 6))
|
||||
>>> make_pad_mask(lengths, xs, 1)
|
||||
tensor([[[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1]],
|
||||
[[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1]],
|
||||
[[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1]]], dtype=torch.uint8)
|
||||
>>> make_pad_mask(lengths, xs, 2)
|
||||
tensor([[[0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 1]],
|
||||
[[0, 0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 1, 1, 1]],
|
||||
[[0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
|
||||
|
||||
"""
|
||||
if length_dim == 0:
|
||||
raise ValueError("length_dim cannot be 0: {}".format(length_dim))
|
||||
|
||||
if not isinstance(lengths, list):
|
||||
lengths = lengths.long().tolist()
|
||||
|
||||
bs = int(len(lengths))
|
||||
if maxlen is None:
|
||||
if xs is None:
|
||||
maxlen = int(max(lengths))
|
||||
else:
|
||||
maxlen = xs.size(length_dim)
|
||||
else:
|
||||
assert xs is None
|
||||
assert maxlen >= int(max(lengths))
|
||||
|
||||
seq_range = torch.arange(0, maxlen, dtype=torch.int64)
|
||||
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
|
||||
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
|
||||
mask = seq_range_expand >= seq_length_expand
|
||||
|
||||
if xs is not None:
|
||||
assert xs.size(0) == bs, (xs.size(0), bs)
|
||||
|
||||
if length_dim < 0:
|
||||
length_dim = xs.dim() + length_dim
|
||||
# ind = (:, None, ..., None, :, , None, ..., None)
|
||||
ind = tuple(
|
||||
slice(None) if i in (0, length_dim) else None for i in range(xs.dim())
|
||||
)
|
||||
mask = mask[ind].expand_as(xs).to(xs.device)
|
||||
return mask
|
||||
|
||||
|
||||
def make_non_pad_mask(lengths, xs=None, length_dim=-1):
|
||||
"""Make mask tensor containing indices of non-padded part.
|
||||
|
||||
Args:
|
||||
lengths (LongTensor or List): Batch of lengths (B,).
|
||||
xs (Tensor, optional): The reference tensor.
|
||||
If set, masks will be the same shape as this tensor.
|
||||
length_dim (int, optional): Dimension indicator of the above tensor.
|
||||
See the example.
|
||||
|
||||
Returns:
|
||||
ByteTensor: mask tensor containing indices of padded part.
|
||||
dtype=torch.uint8 in PyTorch 1.2-
|
||||
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
||||
|
||||
Examples:
|
||||
With only lengths.
|
||||
|
||||
>>> lengths = [5, 3, 2]
|
||||
>>> make_non_pad_mask(lengths)
|
||||
masks = [[1, 1, 1, 1 ,1],
|
||||
[1, 1, 1, 0, 0],
|
||||
[1, 1, 0, 0, 0]]
|
||||
|
||||
With the reference tensor.
|
||||
|
||||
>>> xs = torch.zeros((3, 2, 4))
|
||||
>>> make_non_pad_mask(lengths, xs)
|
||||
tensor([[[1, 1, 1, 1],
|
||||
[1, 1, 1, 1]],
|
||||
[[1, 1, 1, 0],
|
||||
[1, 1, 1, 0]],
|
||||
[[1, 1, 0, 0],
|
||||
[1, 1, 0, 0]]], dtype=torch.uint8)
|
||||
>>> xs = torch.zeros((3, 2, 6))
|
||||
>>> make_non_pad_mask(lengths, xs)
|
||||
tensor([[[1, 1, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1, 0]],
|
||||
[[1, 1, 1, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 0]],
|
||||
[[1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
|
||||
|
||||
With the reference tensor and dimension indicator.
|
||||
|
||||
>>> xs = torch.zeros((3, 6, 6))
|
||||
>>> make_non_pad_mask(lengths, xs, 1)
|
||||
tensor([[[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0, 0]],
|
||||
[[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0]],
|
||||
[[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0]]], dtype=torch.uint8)
|
||||
>>> make_non_pad_mask(lengths, xs, 2)
|
||||
tensor([[[1, 1, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1, 0]],
|
||||
[[1, 1, 1, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 0],
|
||||
[1, 1, 1, 0, 0, 0]],
|
||||
[[1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0, 0],
|
||||
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
|
||||
|
||||
"""
|
||||
return ~make_pad_mask(lengths, xs, length_dim)
|
||||
|
||||
|
||||
def mask_by_length(xs, lengths, fill=0):
|
||||
"""Mask tensor according to length.
|
||||
|
||||
Args:
|
||||
xs (Tensor): Batch of input tensor (B, `*`).
|
||||
lengths (LongTensor or List): Batch of lengths (B,).
|
||||
fill (int or float): Value to fill masked part.
|
||||
|
||||
Returns:
|
||||
Tensor: Batch of masked input tensor (B, `*`).
|
||||
|
||||
Examples:
|
||||
>>> x = torch.arange(5).repeat(3, 1) + 1
|
||||
>>> x
|
||||
tensor([[1, 2, 3, 4, 5],
|
||||
[1, 2, 3, 4, 5],
|
||||
[1, 2, 3, 4, 5]])
|
||||
>>> lengths = [5, 3, 2]
|
||||
>>> mask_by_length(x, lengths)
|
||||
tensor([[1, 2, 3, 4, 5],
|
||||
[1, 2, 3, 0, 0],
|
||||
[1, 2, 0, 0, 0]])
|
||||
|
||||
"""
|
||||
assert xs.size(0) == len(lengths)
|
||||
ret = xs.data.new(*xs.size()).fill_(fill)
|
||||
for i, l in enumerate(lengths):
|
||||
ret[i, :l] = xs[i, :l]
|
||||
return ret
|
||||
|
||||
|
||||
def th_accuracy(pad_outputs, pad_targets, ignore_label):
|
||||
"""Calculate accuracy.
|
||||
|
||||
Args:
|
||||
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
||||
pad_targets (LongTensor): Target label tensors (B, Lmax, D).
|
||||
ignore_label (int): Ignore label id.
|
||||
|
||||
Returns:
|
||||
float: Accuracy value (0.0 - 1.0).
|
||||
|
||||
"""
|
||||
pad_pred = pad_outputs.view(
|
||||
pad_targets.size(0), pad_targets.size(1), pad_outputs.size(1)
|
||||
).argmax(2)
|
||||
mask = pad_targets != ignore_label
|
||||
numerator = torch.sum(
|
||||
pad_pred.masked_select(mask) == pad_targets.masked_select(mask)
|
||||
)
|
||||
denominator = torch.sum(mask)
|
||||
return float(numerator) / float(denominator)
|
||||
|
||||
|
||||
def to_torch_tensor(x):
|
||||
"""Change to torch.Tensor or ComplexTensor from numpy.ndarray.
|
||||
|
||||
Args:
|
||||
x: Inputs. It should be one of numpy.ndarray, Tensor, ComplexTensor, and dict.
|
||||
|
||||
Returns:
|
||||
Tensor or ComplexTensor: Type converted inputs.
|
||||
|
||||
Examples:
|
||||
>>> xs = np.ones(3, dtype=np.float32)
|
||||
>>> xs = to_torch_tensor(xs)
|
||||
tensor([1., 1., 1.])
|
||||
>>> xs = torch.ones(3, 4, 5)
|
||||
>>> assert to_torch_tensor(xs) is xs
|
||||
>>> xs = {'real': xs, 'imag': xs}
|
||||
>>> to_torch_tensor(xs)
|
||||
ComplexTensor(
|
||||
Real:
|
||||
tensor([1., 1., 1.])
|
||||
Imag;
|
||||
tensor([1., 1., 1.])
|
||||
)
|
||||
|
||||
"""
|
||||
# If numpy, change to torch tensor
|
||||
if isinstance(x, np.ndarray):
|
||||
if x.dtype.kind == "c":
|
||||
# Dynamically importing because torch_complex requires python3
|
||||
from torch_complex.tensor import ComplexTensor
|
||||
|
||||
return ComplexTensor(x)
|
||||
else:
|
||||
return torch.from_numpy(x)
|
||||
|
||||
# If {'real': ..., 'imag': ...}, convert to ComplexTensor
|
||||
elif isinstance(x, dict):
|
||||
# Dynamically importing because torch_complex requires python3
|
||||
from torch_complex.tensor import ComplexTensor
|
||||
|
||||
if "real" not in x or "imag" not in x:
|
||||
raise ValueError("has 'real' and 'imag' keys: {}".format(list(x)))
|
||||
# Relative importing because of using python3 syntax
|
||||
return ComplexTensor(x["real"], x["imag"])
|
||||
|
||||
# If torch.Tensor, as it is
|
||||
elif isinstance(x, torch.Tensor):
|
||||
return x
|
||||
|
||||
else:
|
||||
error = (
|
||||
"x must be numpy.ndarray, torch.Tensor or a dict like "
|
||||
"{{'real': torch.Tensor, 'imag': torch.Tensor}}, "
|
||||
"but got {}".format(type(x))
|
||||
)
|
||||
try:
|
||||
from torch_complex.tensor import ComplexTensor
|
||||
except Exception:
|
||||
# If PY2
|
||||
raise ValueError(error)
|
||||
else:
|
||||
# If PY3
|
||||
if isinstance(x, ComplexTensor):
|
||||
return x
|
||||
else:
|
||||
raise ValueError(error)
|
||||
|
||||
|
||||
def get_subsample(train_args, mode, arch):
|
||||
"""Parse the subsampling factors from the args for the specified `mode` and `arch`.
|
||||
|
||||
Args:
|
||||
train_args: argument Namespace containing options.
|
||||
mode: one of ('asr', 'mt', 'st')
|
||||
arch: one of ('rnn', 'rnn-t', 'rnn_mix', 'rnn_mulenc', 'transformer')
|
||||
|
||||
Returns:
|
||||
np.ndarray / List[np.ndarray]: subsampling factors.
|
||||
"""
|
||||
if arch == "transformer":
|
||||
return np.array([1])
|
||||
|
||||
elif mode == "mt" and arch == "rnn":
|
||||
# +1 means input (+1) and layers outputs (train_args.elayer)
|
||||
subsample = np.ones(train_args.elayers + 1, dtype=np.int64)
|
||||
logging.warning("Subsampling is not performed for machine translation.")
|
||||
logging.info("subsample: " + " ".join([str(x) for x in subsample]))
|
||||
return subsample
|
||||
|
||||
elif (
|
||||
(mode == "asr" and arch in ("rnn", "rnn-t"))
|
||||
or (mode == "mt" and arch == "rnn")
|
||||
or (mode == "st" and arch == "rnn")
|
||||
):
|
||||
subsample = np.ones(train_args.elayers + 1, dtype=np.int64)
|
||||
if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
|
||||
ss = train_args.subsample.split("_")
|
||||
for j in range(min(train_args.elayers + 1, len(ss))):
|
||||
subsample[j] = int(ss[j])
|
||||
else:
|
||||
logging.warning(
|
||||
"Subsampling is not performed for vgg*. "
|
||||
"It is performed in max pooling layers at CNN."
|
||||
)
|
||||
logging.info("subsample: " + " ".join([str(x) for x in subsample]))
|
||||
return subsample
|
||||
|
||||
elif mode == "asr" and arch == "rnn_mix":
|
||||
subsample = np.ones(
|
||||
train_args.elayers_sd + train_args.elayers + 1, dtype=np.int64
|
||||
)
|
||||
if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
|
||||
ss = train_args.subsample.split("_")
|
||||
for j in range(
|
||||
min(train_args.elayers_sd + train_args.elayers + 1, len(ss))
|
||||
):
|
||||
subsample[j] = int(ss[j])
|
||||
else:
|
||||
logging.warning(
|
||||
"Subsampling is not performed for vgg*. "
|
||||
"It is performed in max pooling layers at CNN."
|
||||
)
|
||||
logging.info("subsample: " + " ".join([str(x) for x in subsample]))
|
||||
return subsample
|
||||
|
||||
elif mode == "asr" and arch == "rnn_mulenc":
|
||||
subsample_list = []
|
||||
for idx in range(train_args.num_encs):
|
||||
subsample = np.ones(train_args.elayers[idx] + 1, dtype=np.int64)
|
||||
if train_args.etype[idx].endswith("p") and not train_args.etype[
|
||||
idx
|
||||
].startswith("vgg"):
|
||||
ss = train_args.subsample[idx].split("_")
|
||||
for j in range(min(train_args.elayers[idx] + 1, len(ss))):
|
||||
subsample[j] = int(ss[j])
|
||||
else:
|
||||
logging.warning(
|
||||
"Encoder %d: Subsampling is not performed for vgg*. "
|
||||
"It is performed in max pooling layers at CNN.",
|
||||
idx + 1,
|
||||
)
|
||||
logging.info("subsample: " + " ".join([str(x) for x in subsample]))
|
||||
subsample_list.append(subsample)
|
||||
return subsample_list
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid options: mode={}, arch={}".format(mode, arch))
|
||||
|
||||
|
||||
def rename_state_dict(
|
||||
old_prefix: str, new_prefix: str, state_dict: Dict[str, torch.Tensor]
|
||||
):
|
||||
"""Replace keys of old prefix with new prefix in state dict."""
|
||||
# need this list not to break the dict iterator
|
||||
old_keys = [k for k in state_dict if k.startswith(old_prefix)]
|
||||
if len(old_keys) > 0:
|
||||
logging.warning(f"Rename: {old_prefix} -> {new_prefix}")
|
||||
for k in old_keys:
|
||||
v = state_dict.pop(k)
|
||||
new_k = k.replace(old_prefix, new_prefix)
|
||||
state_dict[new_k] = v
|
||||
|
||||
|
||||
def get_activation(act):
|
||||
"""Return activation function."""
|
||||
# Lazy load to avoid unused import
|
||||
from espnet.nets.pytorch_backend.conformer.swish import Swish
|
||||
|
||||
activation_funcs = {
|
||||
"hardtanh": torch.nn.Hardtanh,
|
||||
"tanh": torch.nn.Tanh,
|
||||
"relu": torch.nn.ReLU,
|
||||
"selu": torch.nn.SELU,
|
||||
"swish": Swish,
|
||||
}
|
||||
|
||||
return activation_funcs[act]()
|
||||
424
egs/librispeech/ASR/pruned_transducer_stateless_d2v/optim.py
Normal file
424
egs/librispeech/ASR/pruned_transducer_stateless_d2v/optim.py
Normal file
@ -0,0 +1,424 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
|
||||
|
||||
class Eve(Optimizer):
|
||||
r"""
|
||||
Implements Eve algorithm. This is a modified version of AdamW with a special
|
||||
way of setting the weight-decay / shrinkage-factor, which is designed to make the
|
||||
rms of the parameters approach a particular target_rms (default: 0.1). This is
|
||||
for use with networks with 'scaled' versions of modules (see scaling.py), which
|
||||
will be close to invariant to the absolute scale on the parameter matrix.
|
||||
|
||||
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||
Eve is unpublished so far.
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay coefficient (default: 3e-4;
|
||||
this value means that the weight would decay significantly after
|
||||
about 3k minibatches. Is not multiplied by learning rate, but
|
||||
is conditional on RMS-value of parameter being > target_rms.
|
||||
target_rms (float, optional): target root-mean-square value of
|
||||
parameters, if they fall below this we will stop applying weight decay.
|
||||
|
||||
|
||||
.. _Adam\: A Method for Stochastic Optimization:
|
||||
https://arxiv.org/abs/1412.6980
|
||||
.. _Decoupled Weight Decay Regularization:
|
||||
https://arxiv.org/abs/1711.05101
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
betas=(0.9, 0.98),
|
||||
eps=1e-8,
|
||||
weight_decay=1e-3,
|
||||
target_rms=0.1,
|
||||
):
|
||||
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0 <= weight_decay <= 0.1:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
if not 0 < target_rms <= 10.0:
|
||||
raise ValueError("Invalid target_rms value: {}".format(target_rms))
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
target_rms=target_rms,
|
||||
)
|
||||
super(Eve, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(Eve, self).__setstate__(state)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
# Perform optimization step
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError("AdamW does not support sparse gradients")
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state["step"] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state["exp_avg"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
# Exponential moving average of squared gradient values
|
||||
state["exp_avg_sq"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
|
||||
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
||||
|
||||
beta1, beta2 = group["betas"]
|
||||
|
||||
state["step"] += 1
|
||||
bias_correction1 = 1 - beta1 ** state["step"]
|
||||
bias_correction2 = 1 - beta2 ** state["step"]
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_(
|
||||
group["eps"]
|
||||
)
|
||||
|
||||
step_size = group["lr"] / bias_correction1
|
||||
target_rms = group["target_rms"]
|
||||
weight_decay = group["weight_decay"]
|
||||
|
||||
if p.numel() > 1:
|
||||
# avoid applying this weight-decay on "scaling factors"
|
||||
# (which are scalar).
|
||||
is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5))
|
||||
p.mul_(1 - (weight_decay * is_above_target_rms))
|
||||
p.addcdiv_(exp_avg, denom, value=-step_size)
|
||||
|
||||
# Constrain the range of scalar weights
|
||||
if p.numel() == 1:
|
||||
p.clamp_(min=-10, max=2)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class LRScheduler(object):
|
||||
"""
|
||||
Base-class for learning rate schedulers where the learning-rate depends on both the
|
||||
batch and the epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer: Optimizer, verbose: bool = False):
|
||||
# Attach optimizer
|
||||
if not isinstance(optimizer, Optimizer):
|
||||
raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__))
|
||||
self.optimizer = optimizer
|
||||
self.verbose = verbose
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group.setdefault("initial_lr", group["lr"])
|
||||
|
||||
self.base_lrs = [group["initial_lr"] for group in optimizer.param_groups]
|
||||
|
||||
self.epoch = 0
|
||||
self.batch = 0
|
||||
|
||||
def state_dict(self):
|
||||
"""Returns the state of the scheduler as a :class:`dict`.
|
||||
|
||||
It contains an entry for every variable in self.__dict__ which
|
||||
is not the optimizer.
|
||||
"""
|
||||
return {
|
||||
"base_lrs": self.base_lrs,
|
||||
"epoch": self.epoch,
|
||||
"batch": self.batch,
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Loads the schedulers state.
|
||||
|
||||
Args:
|
||||
state_dict (dict): scheduler state. Should be an object returned
|
||||
from a call to :meth:`state_dict`.
|
||||
"""
|
||||
self.__dict__.update(state_dict)
|
||||
|
||||
def get_last_lr(self) -> List[float]:
|
||||
"""Return last computed learning rate by current scheduler. Will be a list of float."""
|
||||
return self._last_lr
|
||||
|
||||
def get_lr(self):
|
||||
# Compute list of learning rates from self.epoch and self.batch and
|
||||
# self.base_lrs; this must be overloaded by the user.
|
||||
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
|
||||
raise NotImplementedError
|
||||
|
||||
def step_batch(self, batch: Optional[int] = None) -> None:
|
||||
# Step the batch index, or just set it. If `batch` is specified, it
|
||||
# must be the batch index from the start of training, i.e. summed over
|
||||
# all epochs.
|
||||
# You can call this in any order; if you don't provide 'batch', it should
|
||||
# of course be called once per batch.
|
||||
if batch is not None:
|
||||
self.batch = batch
|
||||
else:
|
||||
self.batch = self.batch + 1
|
||||
self._set_lrs()
|
||||
|
||||
def step_epoch(self, epoch: Optional[int] = None):
|
||||
# Step the epoch index, or just set it. If you provide the 'epoch' arg,
|
||||
# you should call this at the start of the epoch; if you don't provide the 'epoch'
|
||||
# arg, you should call it at the end of the epoch.
|
||||
if epoch is not None:
|
||||
self.epoch = epoch
|
||||
else:
|
||||
self.epoch = self.epoch + 1
|
||||
self._set_lrs()
|
||||
|
||||
def _set_lrs(self):
|
||||
values = self.get_lr()
|
||||
assert len(values) == len(self.optimizer.param_groups)
|
||||
|
||||
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
|
||||
param_group, lr = data
|
||||
param_group["lr"] = lr
|
||||
self.print_lr(self.verbose, i, lr)
|
||||
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
|
||||
|
||||
def print_lr(self, is_verbose, group, lr):
|
||||
"""Display the current learning rate."""
|
||||
if is_verbose:
|
||||
print(
|
||||
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
|
||||
f" of group {group} to {lr:.4e}."
|
||||
)
|
||||
|
||||
|
||||
class Eden(LRScheduler):
|
||||
"""
|
||||
Eden scheduler.
|
||||
lr = initial_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
|
||||
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25))
|
||||
|
||||
E.g. suggest initial-lr = 0.003 (passed to optimizer).
|
||||
|
||||
Args:
|
||||
optimizer: the optimizer to change the learning rates on
|
||||
lr_batches: the number of batches after which we start significantly
|
||||
decreasing the learning rate, suggest 5000.
|
||||
lr_epochs: the number of epochs after which we start significantly
|
||||
decreasing the learning rate, suggest 6 if you plan to do e.g.
|
||||
20 to 40 epochs, but may need smaller number if dataset is huge
|
||||
and you will do few epochs.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
lr_batches: Union[int, float],
|
||||
lr_epochs: Union[int, float],
|
||||
verbose: bool = False,
|
||||
):
|
||||
super(Eden, self).__init__(optimizer, verbose)
|
||||
self.lr_batches = lr_batches
|
||||
self.lr_epochs = lr_epochs
|
||||
|
||||
def get_lr(self):
|
||||
factor = (
|
||||
(self.batch**2 + self.lr_batches**2) / self.lr_batches**2
|
||||
) ** -0.25 * (
|
||||
((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25
|
||||
)
|
||||
|
||||
return [x * factor for x in self.base_lrs]
|
||||
|
||||
|
||||
class TriStageLRScheduler(LRScheduler):
|
||||
r"""
|
||||
Tri-Stage Learning Rate Scheduler. Implement the learning rate scheduler in "SpecAugment"
|
||||
|
||||
Args:
|
||||
optimizer (Optimizer): Optimizer.
|
||||
init_lr (float): Initial learning rate.
|
||||
peak_lr (float): Maximum learning rate.
|
||||
final_lr (float): Final learning rate.
|
||||
init_lr_scale (float): Initial learning rate scale.
|
||||
final_lr_scale (float): Final learning rate scale.
|
||||
warmup_steps (int): Warmup the learning rate linearly for the first N updates.
|
||||
hold_steps (int): Hold the learning rate for the N updates.
|
||||
decay_steps (int): Decay the learning rate linearly for the first N updates.
|
||||
total_steps (int): Total steps in training.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
init_lr: float,
|
||||
peak_lr: float,
|
||||
final_lr: float,
|
||||
init_lr_scale: float,
|
||||
final_lr_scale: float,
|
||||
warmup_steps: int,
|
||||
hold_steps: int,
|
||||
decay_steps: int,
|
||||
total_steps: int,
|
||||
verbose:bool = False
|
||||
):
|
||||
assert isinstance(warmup_steps, int), "warmup_steps should be inteager type"
|
||||
assert isinstance(total_steps, int), "total_steps should be inteager type"
|
||||
|
||||
super(TriStageLRScheduler, self).__init__(optimizer, verbose)
|
||||
|
||||
self.init_lr = init_lr
|
||||
self.init_lr *= init_lr_scale
|
||||
self.final_lr = final_lr
|
||||
self.peak_lr = peak_lr
|
||||
self.warmup_steps = warmup_steps
|
||||
self.hold_steps = hold_steps
|
||||
self.decay_steps = decay_steps
|
||||
|
||||
self.warmup_rate = (self.peak_lr - self.init_lr) / self.warmup_steps if self.warmup_steps != 0 else 0
|
||||
self.decay_factor = -math.log(final_lr_scale) / self.decay_steps
|
||||
|
||||
self.lr = self.init_lr
|
||||
self.update_steps = 0
|
||||
|
||||
def _decide_stage(self):
|
||||
if self.update_steps < self.warmup_steps:
|
||||
return 0, self.update_steps
|
||||
|
||||
offset = self.warmup_steps
|
||||
|
||||
if self.update_steps < offset + self.hold_steps:
|
||||
return 1, self.update_steps - offset
|
||||
|
||||
offset += self.hold_steps
|
||||
|
||||
if self.update_steps <= offset + self.decay_steps:
|
||||
# decay stage
|
||||
return 2, self.update_steps - offset
|
||||
|
||||
offset += self.decay_steps
|
||||
|
||||
return 3, self.update_steps - offset
|
||||
|
||||
def get_lr(self, val_loss: Optional[torch.FloatTensor] = None):
|
||||
stage, steps_in_stage = self._decide_stage()
|
||||
|
||||
if stage == 0:
|
||||
self.lr = self.init_lr + self.warmup_rate * steps_in_stage
|
||||
elif stage == 1:
|
||||
self.lr = self.peak_lr
|
||||
elif stage == 2:
|
||||
self.lr = self.peak_lr * math.exp(-self.decay_factor * steps_in_stage)
|
||||
elif stage == 3:
|
||||
self.lr = self.final_lr
|
||||
else:
|
||||
raise ValueError("Undefined stage")
|
||||
|
||||
#self.set_lr(self.optimizer, self.lr)
|
||||
self.update_steps += 1
|
||||
|
||||
return [self.lr]
|
||||
|
||||
|
||||
def _test_eden():
|
||||
m = torch.nn.Linear(100, 100)
|
||||
optim = Eve(m.parameters(), lr=0.003)
|
||||
|
||||
#scheduler = Eden(optim, lr_batches=30, lr_epochs=2, verbose=True)
|
||||
scheduler = TriStageLRScheduler(optim,
|
||||
init_lr=1e-05,
|
||||
peak_lr=3e-04,
|
||||
final_lr=1e-05,
|
||||
init_lr_scale=0.1,
|
||||
final_lr_scale=0.1,
|
||||
warmup_steps=200,
|
||||
hold_steps=300,
|
||||
decay_steps=200,
|
||||
total_steps=800,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
for epoch in range(10):
|
||||
#scheduler.step_epoch(epoch) # sets epoch to `epoch`
|
||||
|
||||
for step in range(80):
|
||||
x = torch.randn(200, 100).detach()
|
||||
x.requires_grad = True
|
||||
y = m(x)
|
||||
dy = torch.randn(200, 100).detach()
|
||||
f = (y * dy).sum()
|
||||
f.backward()
|
||||
|
||||
optim.step()
|
||||
scheduler.step_batch()
|
||||
optim.zero_grad()
|
||||
print("last lr = ", scheduler.get_last_lr())
|
||||
print("state dict = ", scheduler.state_dict())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_eden()
|
||||
344
egs/librispeech/ASR/pruned_transducer_stateless_d2v/pretrained.py
Executable file
344
egs/librispeech/ASR/pruned_transducer_stateless_d2v/pretrained.py
Executable file
@ -0,0 +1,344 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless5/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless5/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless5/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method modified_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless5/pretrained.py \
|
||||
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--method fast_beam_search \
|
||||
--beam-size 4 \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
You can also use `./pruned_transducer_stateless5/exp/epoch-xx.pt`.
|
||||
|
||||
Note: ./pruned_transducer_stateless5/exp/pretrained.pt is generated by
|
||||
./pruned_transducer_stateless5/export.py
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torchaudio
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="""Path to bpe.model.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
|
||||
params.update(vars(args))
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
|
||||
|
||||
num_waves = encoder_out.size(0)
|
||||
hyps = []
|
||||
msg = f"Using {params.method}"
|
||||
if params.method == "beam_search":
|
||||
msg += f" with beam size {params.beam_size}"
|
||||
logging.info(msg)
|
||||
|
||||
if params.method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
1015
egs/librispeech/ASR/pruned_transducer_stateless_d2v/scaling.py
Normal file
1015
egs/librispeech/ASR/pruned_transducer_stateless_d2v/scaling.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,320 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file provides functions to convert `ScaledLinear`, `ScaledConv1d`,
|
||||
`ScaledConv2d`, and `ScaledEmbedding` to their non-scaled counterparts:
|
||||
`nn.Linear`, `nn.Conv1d`, `nn.Conv2d`, and `nn.Embedding`.
|
||||
|
||||
The scaled version are required only in the training time. It simplifies our
|
||||
life by converting them to their non-scaled version during inference.
|
||||
"""
|
||||
|
||||
import copy
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from lstmp import LSTMP
|
||||
from scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
ScaledConv1d,
|
||||
ScaledConv2d,
|
||||
ScaledEmbedding,
|
||||
ScaledLinear,
|
||||
ScaledLSTM,
|
||||
)
|
||||
|
||||
|
||||
class NonScaledNorm(nn.Module):
|
||||
"""See BasicNorm for doc"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels: int,
|
||||
eps_exp: float,
|
||||
channel_dim: int = -1, # CAUTION: see documentation.
|
||||
):
|
||||
super().__init__()
|
||||
self.num_channels = num_channels
|
||||
self.channel_dim = channel_dim
|
||||
self.eps_exp = eps_exp
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if not torch.jit.is_tracing():
|
||||
assert x.shape[self.channel_dim] == self.num_channels
|
||||
scales = (
|
||||
torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp
|
||||
).pow(-0.5)
|
||||
return x * scales
|
||||
|
||||
|
||||
def scaled_linear_to_linear(scaled_linear: ScaledLinear) -> nn.Linear:
|
||||
"""Convert an instance of ScaledLinear to nn.Linear.
|
||||
|
||||
Args:
|
||||
scaled_linear:
|
||||
The layer to be converted.
|
||||
Returns:
|
||||
Return a linear layer. It satisfies:
|
||||
|
||||
scaled_linear(x) == linear(x)
|
||||
|
||||
for any given input tensor `x`.
|
||||
"""
|
||||
assert isinstance(scaled_linear, ScaledLinear), type(scaled_linear)
|
||||
|
||||
weight = scaled_linear.get_weight()
|
||||
bias = scaled_linear.get_bias()
|
||||
has_bias = bias is not None
|
||||
|
||||
linear = torch.nn.Linear(
|
||||
in_features=scaled_linear.in_features,
|
||||
out_features=scaled_linear.out_features,
|
||||
bias=True, # otherwise, it throws errors when converting to PNNX format
|
||||
# device=weight.device, # Pytorch version before v1.9.0 does not have
|
||||
# this argument. Comment out for now, we will
|
||||
# see if it will raise error for versions
|
||||
# after v1.9.0
|
||||
)
|
||||
linear.weight.data.copy_(weight)
|
||||
|
||||
if has_bias:
|
||||
linear.bias.data.copy_(bias)
|
||||
else:
|
||||
linear.bias.data.zero_()
|
||||
|
||||
return linear
|
||||
|
||||
|
||||
def scaled_conv1d_to_conv1d(scaled_conv1d: ScaledConv1d) -> nn.Conv1d:
|
||||
"""Convert an instance of ScaledConv1d to nn.Conv1d.
|
||||
|
||||
Args:
|
||||
scaled_conv1d:
|
||||
The layer to be converted.
|
||||
Returns:
|
||||
Return an instance of nn.Conv1d that has the same `forward()` behavior
|
||||
of the given `scaled_conv1d`.
|
||||
"""
|
||||
assert isinstance(scaled_conv1d, ScaledConv1d), type(scaled_conv1d)
|
||||
|
||||
weight = scaled_conv1d.get_weight()
|
||||
bias = scaled_conv1d.get_bias()
|
||||
has_bias = bias is not None
|
||||
|
||||
conv1d = nn.Conv1d(
|
||||
in_channels=scaled_conv1d.in_channels,
|
||||
out_channels=scaled_conv1d.out_channels,
|
||||
kernel_size=scaled_conv1d.kernel_size,
|
||||
stride=scaled_conv1d.stride,
|
||||
padding=scaled_conv1d.padding,
|
||||
dilation=scaled_conv1d.dilation,
|
||||
groups=scaled_conv1d.groups,
|
||||
bias=scaled_conv1d.bias is not None,
|
||||
padding_mode=scaled_conv1d.padding_mode,
|
||||
)
|
||||
|
||||
conv1d.weight.data.copy_(weight)
|
||||
if has_bias:
|
||||
conv1d.bias.data.copy_(bias)
|
||||
|
||||
return conv1d
|
||||
|
||||
|
||||
def scaled_conv2d_to_conv2d(scaled_conv2d: ScaledConv2d) -> nn.Conv2d:
|
||||
"""Convert an instance of ScaledConv2d to nn.Conv2d.
|
||||
|
||||
Args:
|
||||
scaled_conv2d:
|
||||
The layer to be converted.
|
||||
Returns:
|
||||
Return an instance of nn.Conv2d that has the same `forward()` behavior
|
||||
of the given `scaled_conv2d`.
|
||||
"""
|
||||
assert isinstance(scaled_conv2d, ScaledConv2d), type(scaled_conv2d)
|
||||
|
||||
weight = scaled_conv2d.get_weight()
|
||||
bias = scaled_conv2d.get_bias()
|
||||
has_bias = bias is not None
|
||||
|
||||
conv2d = nn.Conv2d(
|
||||
in_channels=scaled_conv2d.in_channels,
|
||||
out_channels=scaled_conv2d.out_channels,
|
||||
kernel_size=scaled_conv2d.kernel_size,
|
||||
stride=scaled_conv2d.stride,
|
||||
padding=scaled_conv2d.padding,
|
||||
dilation=scaled_conv2d.dilation,
|
||||
groups=scaled_conv2d.groups,
|
||||
bias=scaled_conv2d.bias is not None,
|
||||
padding_mode=scaled_conv2d.padding_mode,
|
||||
)
|
||||
|
||||
conv2d.weight.data.copy_(weight)
|
||||
if has_bias:
|
||||
conv2d.bias.data.copy_(bias)
|
||||
|
||||
return conv2d
|
||||
|
||||
|
||||
def scaled_embedding_to_embedding(
|
||||
scaled_embedding: ScaledEmbedding,
|
||||
) -> nn.Embedding:
|
||||
"""Convert an instance of ScaledEmbedding to nn.Embedding.
|
||||
|
||||
Args:
|
||||
scaled_embedding:
|
||||
The layer to be converted.
|
||||
Returns:
|
||||
Return an instance of nn.Embedding that has the same `forward()` behavior
|
||||
of the given `scaled_embedding`.
|
||||
"""
|
||||
assert isinstance(scaled_embedding, ScaledEmbedding), type(scaled_embedding)
|
||||
embedding = nn.Embedding(
|
||||
num_embeddings=scaled_embedding.num_embeddings,
|
||||
embedding_dim=scaled_embedding.embedding_dim,
|
||||
padding_idx=scaled_embedding.padding_idx,
|
||||
scale_grad_by_freq=scaled_embedding.scale_grad_by_freq,
|
||||
sparse=scaled_embedding.sparse,
|
||||
)
|
||||
weight = scaled_embedding.weight
|
||||
scale = scaled_embedding.scale
|
||||
|
||||
embedding.weight.data.copy_(weight * scale.exp())
|
||||
|
||||
return embedding
|
||||
|
||||
|
||||
def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm:
|
||||
assert isinstance(basic_norm, BasicNorm), type(BasicNorm)
|
||||
norm = NonScaledNorm(
|
||||
num_channels=basic_norm.num_channels,
|
||||
eps_exp=basic_norm.eps.data.exp().item(),
|
||||
channel_dim=basic_norm.channel_dim,
|
||||
)
|
||||
return norm
|
||||
|
||||
|
||||
def scaled_lstm_to_lstm(scaled_lstm: ScaledLSTM) -> nn.LSTM:
|
||||
"""Convert an instance of ScaledLSTM to nn.LSTM.
|
||||
|
||||
Args:
|
||||
scaled_lstm:
|
||||
The layer to be converted.
|
||||
Returns:
|
||||
Return an instance of nn.LSTM that has the same `forward()` behavior
|
||||
of the given `scaled_lstm`.
|
||||
"""
|
||||
assert isinstance(scaled_lstm, ScaledLSTM), type(scaled_lstm)
|
||||
lstm = nn.LSTM(
|
||||
input_size=scaled_lstm.input_size,
|
||||
hidden_size=scaled_lstm.hidden_size,
|
||||
num_layers=scaled_lstm.num_layers,
|
||||
bias=scaled_lstm.bias,
|
||||
batch_first=scaled_lstm.batch_first,
|
||||
dropout=scaled_lstm.dropout,
|
||||
bidirectional=scaled_lstm.bidirectional,
|
||||
proj_size=scaled_lstm.proj_size,
|
||||
)
|
||||
|
||||
assert lstm._flat_weights_names == scaled_lstm._flat_weights_names
|
||||
for idx in range(len(scaled_lstm._flat_weights_names)):
|
||||
scaled_weight = scaled_lstm._flat_weights[idx] * scaled_lstm._scales[idx].exp()
|
||||
lstm._flat_weights[idx].data.copy_(scaled_weight)
|
||||
|
||||
return lstm
|
||||
|
||||
|
||||
# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa
|
||||
# get_submodule was added to nn.Module at v1.9.0
|
||||
def get_submodule(model, target):
|
||||
if target == "":
|
||||
return model
|
||||
atoms: List[str] = target.split(".")
|
||||
mod: torch.nn.Module = model
|
||||
for item in atoms:
|
||||
if not hasattr(mod, item):
|
||||
raise AttributeError(
|
||||
mod._get_name() + " has no " "attribute `" + item + "`"
|
||||
)
|
||||
mod = getattr(mod, item)
|
||||
if not isinstance(mod, torch.nn.Module):
|
||||
raise AttributeError("`" + item + "` is not " "an nn.Module")
|
||||
return mod
|
||||
|
||||
|
||||
def convert_scaled_to_non_scaled(
|
||||
model: nn.Module,
|
||||
inplace: bool = False,
|
||||
is_onnx: bool = False,
|
||||
):
|
||||
"""Convert `ScaledLinear`, `ScaledConv1d`, and `ScaledConv2d`
|
||||
in the given modle to their unscaled version `nn.Linear`, `nn.Conv1d`,
|
||||
and `nn.Conv2d`.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The model to be converted.
|
||||
inplace:
|
||||
If True, the input model is modified inplace.
|
||||
If False, the input model is copied and we modify the copied version.
|
||||
is_onnx:
|
||||
If True, we are going to export the model to ONNX. In this case,
|
||||
we will convert nn.LSTM with proj_size to LSTMP.
|
||||
Return:
|
||||
Return a model without scaled layers.
|
||||
"""
|
||||
if not inplace:
|
||||
model = copy.deepcopy(model)
|
||||
|
||||
excluded_patterns = r"self_attn\.(in|out)_proj"
|
||||
p = re.compile(excluded_patterns)
|
||||
|
||||
d = {}
|
||||
for name, m in model.named_modules():
|
||||
if isinstance(m, ScaledLinear):
|
||||
if p.search(name) is not None:
|
||||
continue
|
||||
d[name] = scaled_linear_to_linear(m)
|
||||
elif isinstance(m, ScaledConv1d):
|
||||
d[name] = scaled_conv1d_to_conv1d(m)
|
||||
elif isinstance(m, ScaledConv2d):
|
||||
d[name] = scaled_conv2d_to_conv2d(m)
|
||||
elif isinstance(m, ScaledEmbedding):
|
||||
d[name] = scaled_embedding_to_embedding(m)
|
||||
elif isinstance(m, BasicNorm):
|
||||
d[name] = convert_basic_norm(m)
|
||||
elif isinstance(m, ScaledLSTM):
|
||||
if is_onnx:
|
||||
d[name] = LSTMP(scaled_lstm_to_lstm(m))
|
||||
# See
|
||||
# https://github.com/pytorch/pytorch/issues/47887
|
||||
# d[name] = torch.jit.script(LSTMP(scaled_lstm_to_lstm(m)))
|
||||
else:
|
||||
d[name] = scaled_lstm_to_lstm(m)
|
||||
elif isinstance(m, ActivationBalancer):
|
||||
d[name] = nn.Identity()
|
||||
|
||||
for k, v in d.items():
|
||||
if "." in k:
|
||||
parent, child = k.rsplit(".", maxsplit=1)
|
||||
setattr(get_submodule(model, parent), child, v)
|
||||
else:
|
||||
setattr(model, k, v)
|
||||
|
||||
return model
|
||||
@ -0,0 +1,282 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import warnings
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
||||
from decode_stream import DecodeStream
|
||||
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.utils import get_texts
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
streams: List[DecodeStream],
|
||||
) -> None:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
streams:
|
||||
A list of Stream objects.
|
||||
"""
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = model.device
|
||||
T = encoder_out.size(1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
# decoder_out is of shape (N, 1, decoder_out_dim)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
for t in range(T):
|
||||
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out.unsqueeze(2),
|
||||
decoder_out.unsqueeze(1),
|
||||
project_input=False,
|
||||
)
|
||||
# logits'shape (batch_size, vocab_size)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v != blank_id:
|
||||
streams[i].hyp.append(v)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(
|
||||
decoder_input,
|
||||
need_pad=False,
|
||||
)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
streams: List[DecodeStream],
|
||||
num_active_paths: int = 4,
|
||||
) -> None:
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
||||
the encoder model.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
num_active_paths:
|
||||
Number of active paths during the beam search.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
batch_size = len(streams)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = [stream.hyps for stream in streams]
|
||||
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.stack(
|
||||
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
|
||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
for i in range(batch_size):
|
||||
streams[i].hyps = B[i]
|
||||
|
||||
|
||||
def fast_beam_search_one_best(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
processed_lens: torch.Tensor,
|
||||
streams: List[DecodeStream],
|
||||
beam: float,
|
||||
max_states: int,
|
||||
max_contexts: int,
|
||||
) -> None:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
A lattice is first generated by Fsa-based beam search, then we get the
|
||||
recognition by applying shortest path on the lattice.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder.
|
||||
processed_lens:
|
||||
A tensor of shape (N,) containing the number of processed frames
|
||||
in `encoder_out` before padding.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
beam:
|
||||
Beam value, similar to the beam used in Kaldi..
|
||||
max_states:
|
||||
Max states per stream per frame.
|
||||
max_contexts:
|
||||
Max contexts pre stream per frame.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
B, T, C = encoder_out.shape
|
||||
assert B == len(streams)
|
||||
|
||||
context_size = model.decoder.context_size
|
||||
vocab_size = model.decoder.vocab_size
|
||||
|
||||
config = k2.RnntDecodingConfig(
|
||||
vocab_size=vocab_size,
|
||||
decoder_history_len=context_size,
|
||||
beam=beam,
|
||||
max_contexts=max_contexts,
|
||||
max_states=max_states,
|
||||
)
|
||||
individual_streams = []
|
||||
for i in range(B):
|
||||
individual_streams.append(streams[i].rnnt_decoding_stream)
|
||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||
|
||||
for t in range(T):
|
||||
# shape is a RaggedShape of shape (B, context)
|
||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||
shape, contexts = decoding_streams.get_contexts()
|
||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||
contexts = contexts.to(torch.int64)
|
||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||
decoder_out = model.decoder(contexts, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# current_encoder_out is of shape
|
||||
# (shape.NumElements(), 1, joiner_dim)
|
||||
# fmt: off
|
||||
current_encoder_out = torch.index_select(
|
||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||
)
|
||||
# fmt: on
|
||||
logits = model.joiner(
|
||||
current_encoder_out.unsqueeze(2),
|
||||
decoder_out.unsqueeze(1),
|
||||
project_input=False,
|
||||
)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
log_probs = logits.log_softmax(dim=-1)
|
||||
decoding_streams.advance(log_probs)
|
||||
|
||||
decoding_streams.terminate_and_flush_to_streams()
|
||||
|
||||
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||
best_path = one_best_decoding(lattice)
|
||||
hyp_tokens = get_texts(best_path)
|
||||
|
||||
for i in range(B):
|
||||
streams[i].hyp = hyp_tokens[i]
|
||||
653
egs/librispeech/ASR/pruned_transducer_stateless_d2v/streaming_decode.py
Executable file
653
egs/librispeech/ASR/pruned_transducer_stateless_d2v/streaming_decode.py
Executable file
@ -0,0 +1,653 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless5/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--left-context 32 \
|
||||
--decode-chunk-size 8 \
|
||||
--right-context 0 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--decoding_method greedy_search \
|
||||
--num-decode-streams 200
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decode-chunk-size",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The chunk size for decoding (in frames after subsampling)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--left-context",
|
||||
type=int,
|
||||
default=64,
|
||||
help="left context can be seen during decoding (in frames after subsampling)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--right-context",
|
||||
type=int,
|
||||
default=0,
|
||||
help="right context can be seen during decoding (in frames after subsampling)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
|
||||
processed_lens = []
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(
|
||||
params.decode_chunk_size * params.subsampling_factor
|
||||
)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# if T is less than 7 there will be an error in time reduction layer,
|
||||
# because we subsample features with ((x_len - 1) // 2 - 1) // 2
|
||||
# we plus 2 here because we will cut off one frame on each size of
|
||||
# encoder_embed output as they see invalid paddings. so we need extra 2
|
||||
# frames.
|
||||
tail_length = 7 + (2 + params.right_context) * params.subsampling_factor
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = [
|
||||
torch.stack([x[0] for x in states], dim=2),
|
||||
torch.stack([x[1] for x in states], dim=2),
|
||||
]
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
|
||||
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
states=states,
|
||||
left_context=params.left_context,
|
||||
right_context=params.right_context,
|
||||
processed_lens=processed_lens,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)]
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = [states[0][i], states[1][i]]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 50
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
initial_states = model.encoder.get_init_state(params.left_context, device=device)
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
# for streaming
|
||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context}"
|
||||
params.suffix += f"-right-context-{params.right_context}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
# Decoding in streaming requires causal convolution
|
||||
params.causal_convolution = True
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_cuts = [test_clean_cuts, test_other_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
65
egs/librispeech/ASR/pruned_transducer_stateless_d2v/test_model.py
Executable file
65
egs/librispeech/ASR/pruned_transducer_stateless_d2v/test_model.py
Executable file
@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless4/test_model.py
|
||||
"""
|
||||
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model_1():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.num_encoder_layers = 24
|
||||
params.dim_feedforward = 1536 # 384 * 4
|
||||
params.encoder_dim = 384
|
||||
model = get_transducer_model(params)
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
|
||||
|
||||
# See Table 1 from https://arxiv.org/pdf/2005.08100.pdf
|
||||
def test_model_M():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.num_encoder_layers = 18
|
||||
params.dim_feedforward = 1024
|
||||
params.encoder_dim = 256
|
||||
params.nhead = 4
|
||||
params.decoder_dim = 512
|
||||
params.joiner_dim = 512
|
||||
model = get_transducer_model(params)
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
|
||||
|
||||
def main():
|
||||
# test_model_1()
|
||||
test_model_M()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1511
egs/librispeech/ASR/pruned_transducer_stateless_d2v/train.py
Executable file
1511
egs/librispeech/ASR/pruned_transducer_stateless_d2v/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1271
egs/librispeech/ASR/pruned_transducer_stateless_d2v/train_old.py
Executable file
1271
egs/librispeech/ASR/pruned_transducer_stateless_d2v/train_old.py
Executable file
File diff suppressed because it is too large
Load Diff
1481
egs/librispeech/ASR/pruned_transducer_stateless_d2v/train_wandb.py
Executable file
1481
egs/librispeech/ASR/pruned_transducer_stateless_d2v/train_wandb.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,168 @@
|
||||
# Copyright 2021 Xuankai Chang
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Encoder definition."""
|
||||
import contextlib
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from filelock import FileLock
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from espnet2.asr.encoder.abs_encoder import AbsEncoder
|
||||
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
|
||||
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
|
||||
|
||||
|
||||
class FairSeqWav2Vec2Encoder(AbsEncoder):
|
||||
"""FairSeq Wav2Vec2 encoder module.
|
||||
|
||||
Args:
|
||||
input_size: input dim
|
||||
output_size: dimension of attention
|
||||
w2v_url: url to Wav2Vec2.0 pretrained model
|
||||
w2v_dir_path: directory to download the Wav2Vec2.0 pretrained model.
|
||||
normalize_before: whether to use layer_norm before the first block
|
||||
finetune_last_n_layers: last n layers to be finetuned in Wav2Vec2.0
|
||||
0 means to finetune every layer if freeze_w2v=False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
w2v_url: str,
|
||||
w2v_dir_path: str = "./",
|
||||
output_size: int = 256,
|
||||
normalize_before: bool = False,
|
||||
freeze_finetune_updates: int = 0,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
|
||||
if w2v_url != "":
|
||||
try:
|
||||
import fairseq
|
||||
from fairseq.models.wav2vec.wav2vec2 import Wav2Vec2Model
|
||||
except Exception as e:
|
||||
print("Error: FairSeq is not properly installed.")
|
||||
print(
|
||||
"Please install FairSeq: cd ${MAIN_ROOT}/tools && make fairseq.done"
|
||||
)
|
||||
raise e
|
||||
|
||||
self.w2v_model_path = download_w2v(w2v_url, w2v_dir_path)
|
||||
|
||||
self._output_size = output_size
|
||||
|
||||
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
||||
[self.w2v_model_path],
|
||||
arg_overrides={"data": w2v_dir_path},
|
||||
)
|
||||
model = models[0]
|
||||
|
||||
if not isinstance(model, Wav2Vec2Model):
|
||||
try:
|
||||
model = model.w2v_encoder.w2v_model
|
||||
except Exception as e:
|
||||
print(
|
||||
"Error: pretrained models should be within: "
|
||||
"'Wav2Vec2Model, Wav2VecCTC' classes, etc."
|
||||
)
|
||||
raise e
|
||||
|
||||
self.encoders = model
|
||||
|
||||
self.pretrained_params = copy.deepcopy(model.state_dict())
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
if self.normalize_before:
|
||||
self.after_norm = LayerNorm(output_size)
|
||||
|
||||
if model.cfg.encoder_embed_dim != output_size:
|
||||
# TODO(xkc09): try LSTM
|
||||
self.output_layer = torch.nn.Sequential(
|
||||
torch.nn.Linear(model.cfg.encoder_embed_dim, output_size),
|
||||
)
|
||||
else:
|
||||
self.output_layer = None
|
||||
|
||||
self.freeze_finetune_updates = freeze_finetune_updates
|
||||
self.register_buffer("num_updates", torch.LongTensor([0]))
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs_pad: torch.Tensor,
|
||||
ilens: torch.Tensor,
|
||||
prev_states: torch.Tensor = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Forward FairSeqWav2Vec2 Encoder.
|
||||
|
||||
Args:
|
||||
xs_pad: input tensor (B, L, D)
|
||||
ilens: input length (B)
|
||||
prev_states: Not to be used now.
|
||||
Returns:
|
||||
position embedded tensor and mask
|
||||
"""
|
||||
masks = make_pad_mask(ilens).to(xs_pad.device)
|
||||
|
||||
ft = self.freeze_finetune_updates <= self.num_updates
|
||||
if self.num_updates <= self.freeze_finetune_updates:
|
||||
self.num_updates += 1
|
||||
elif ft and self.num_updates == self.freeze_finetune_updates + 1:
|
||||
self.num_updates += 1
|
||||
logging.info("Start fine-tuning wav2vec parameters!")
|
||||
|
||||
with torch.no_grad() if not ft else contextlib.nullcontext():
|
||||
enc_outputs = self.encoders(
|
||||
xs_pad,
|
||||
masks,
|
||||
mask=self.training,
|
||||
features_only=True,
|
||||
)
|
||||
|
||||
xs_pad = enc_outputs["x"] # (B,T,C),
|
||||
bs = xs_pad.shape[0]
|
||||
if enc_outputs["padding_mask"] is not None:
|
||||
masks = enc_outputs["padding_mask"] # (B, T)
|
||||
olens = (~masks).sum(dim=1) # (B)
|
||||
else:
|
||||
olens = torch.IntTensor([xs_pad.shape[1]]).repeat(bs).to(xs_pad.device)
|
||||
|
||||
if self.output_layer is not None:
|
||||
xs_pad = self.output_layer(xs_pad)
|
||||
|
||||
if self.normalize_before:
|
||||
xs_pad = self.after_norm(xs_pad)
|
||||
|
||||
return xs_pad, olens, None
|
||||
|
||||
def reload_pretrained_parameters(self):
|
||||
self.encoders.load_state_dict(self.pretrained_params)
|
||||
logging.info("Pretrained Wav2Vec model parameters reloaded!")
|
||||
|
||||
|
||||
def download_w2v(model_url, dir_path):
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
|
||||
model_name = model_url.split("/")[-1]
|
||||
model_path = os.path.join(dir_path, model_name)
|
||||
|
||||
dict_url = "https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt"
|
||||
dict_path = os.path.join(dir_path, dict_url.split("/")[-1])
|
||||
|
||||
with FileLock(model_path + ".lock"):
|
||||
if not os.path.exists(model_path):
|
||||
torch.hub.download_url_to_file(model_url, model_path)
|
||||
torch.hub.download_url_to_file(dict_url, dict_path)
|
||||
logging.info(f"Wav2Vec model downloaded {model_path}")
|
||||
else:
|
||||
logging.info(f"Wav2Vec model {model_path} already exists.")
|
||||
|
||||
return model_path
|
||||
6
git.sh
Executable file
6
git.sh
Executable file
@ -0,0 +1,6 @@
|
||||
git add *
|
||||
git commit -m "from local"
|
||||
git push
|
||||
#git push --set-upstream origin summit
|
||||
|
||||
echo "git push done"
|
||||
21
watchdog_v2.py
Normal file
21
watchdog_v2.py
Normal file
@ -0,0 +1,21 @@
|
||||
import os
|
||||
import time
|
||||
|
||||
lastmod = []
|
||||
dirToWatchList = []
|
||||
path = './'
|
||||
for dirpath in os.walk(path):
|
||||
if '.git' in dirpath[0]:
|
||||
continue
|
||||
dirToWatch = dirpath[0]+'/'
|
||||
lastmod.append(int(os.path.getmtime(dirToWatch)))
|
||||
dirToWatchList.append(dirToWatch)
|
||||
#lastmod = int(os.path.getmtime(dirToWatch))
|
||||
|
||||
while True:
|
||||
for enum, dirToWatch in enumerate(dirToWatchList):
|
||||
if lastmod[enum] != int(os.path.getmtime(dirToWatch)):
|
||||
#print('Warning: Modify Detected.')
|
||||
os.system('./git.sh')
|
||||
lastmod[enum] = int(os.path.getmtime(dirToWatch))
|
||||
time.sleep(1.0)
|
||||
Loading…
x
Reference in New Issue
Block a user