mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 14:44:18 +00:00
docker + ubiqus + pyonmttok
This commit is contained in:
parent
b3e6bf66df
commit
092f69b477
11
docker/Makefile
Normal file
11
docker/Makefile
Normal file
@ -0,0 +1,11 @@
|
||||
build_docker:
|
||||
docker build -t icefall/pytorch1.7.1:latest -f ./Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8/Dockerfile ./
|
||||
|
||||
run_docker:
|
||||
docker run -it --rm --runtime=nvidia \
|
||||
--gpus all \
|
||||
-v /data1:/data1 \
|
||||
-v /data1/merge_all_short/raw/fr_token_list/bpe_unigram5000/bpe.pyonmttok.vocab:/data/vocab \
|
||||
-v /data1/merge_all_short/raw/fr_token_list/bpe_unigram5000/bpe.pyonmttok:/data/bpe.pyonmttok \
|
||||
-v /nas-labs/ASR/valentin_work/icefall:/workspace/icefall \
|
||||
--name val_icefall_3 icefall/pytorch1.7.1:latest bash
|
@ -1,7 +1,10 @@
|
||||
FROM pytorch/pytorch:1.7.1-cuda11.0-cudnn8-devel
|
||||
FROM pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel
|
||||
|
||||
# install normal source
|
||||
|
||||
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
|
||||
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
g++ \
|
||||
@ -26,13 +29,6 @@ RUN apt-get update && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
RUN mv /opt/conda/lib/libcufft.so.10 /opt/libcufft.so.10.bak && \
|
||||
mv /opt/conda/lib/libcurand.so.10 /opt/libcurand.so.10.bak && \
|
||||
mv /opt/conda/lib/libcublas.so.11 /opt/libcublas.so.11.bak && \
|
||||
mv /opt/conda/lib/libnvrtc.so.11.0 /opt/libnvrtc.so.11.1.bak && \
|
||||
mv /opt/conda/lib/libnvToolsExt.so.1 /opt/libnvToolsExt.so.1.bak && \
|
||||
mv /opt/conda/lib/libcudart.so.11.0 /opt/libcudart.so.11.0.bak
|
||||
|
||||
# cmake
|
||||
|
||||
RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
|
||||
@ -72,20 +68,26 @@ RUN git clone https://github.com/csukuangfj/kaldifeat.git /opt/kaldifeat && \
|
||||
cd -
|
||||
|
||||
|
||||
RUN conda install pytorch torchvision torchaudio=0.11 cudatoolkit=11.3 -c pytorch
|
||||
|
||||
|
||||
|
||||
#install k2 from source
|
||||
# RUN conda install -c k2-fsa -c pytorch -c conda-forge k2 cudatoolkit=11.3 pytorch=1.10.0
|
||||
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
|
||||
cd /opt/k2 && \
|
||||
python3 setup.py install && \
|
||||
cd -
|
||||
# RUN pip install k2
|
||||
|
||||
# install lhotse
|
||||
RUN pip install git+https://github.com/lhotse-speech/lhotse
|
||||
#RUN pip install lhotse
|
||||
# RUN pip install git+https://github.com/lhotse-speech/lhotse
|
||||
RUN pip install lhotse
|
||||
|
||||
# install icefall
|
||||
RUN git clone https://github.com/k2-fsa/icefall && \
|
||||
cd icefall && \
|
||||
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
# RUN git clone https://github.com/k2-fsa/icefall && \
|
||||
# cd icefall && \
|
||||
# pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
||||
|
||||
|
0
egs/ubiqus/ASR/transducer_emformer/__init__.py
Normal file
0
egs/ubiqus/ASR/transducer_emformer/__init__.py
Normal file
394
egs/ubiqus/ASR/transducer_emformer/asr_datamodule.py
Normal file
394
egs/ubiqus/ASR/transducer_emformer/asr_datamodule.py
Normal file
@ -0,0 +1,394 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures, AudioSamples
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class UbiqusAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("/data1/merge_all_manifest/raw"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
# if self.args.enable_musan:
|
||||
# logging.info("Enable MUSAN")
|
||||
# logging.info("About to get Musan cuts")
|
||||
# cuts_musan = load_manifest(
|
||||
# self.args.manifest_dir / "cuts_musan.json.gz"
|
||||
# )
|
||||
# transforms.append(
|
||||
# CutMix(
|
||||
# cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
# )
|
||||
# )
|
||||
# else:
|
||||
# logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(
|
||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||
)
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
input_strategy=AudioSamples(),
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
input_strategy=AudioSamples(),
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
rec = load_manifest(
|
||||
self.args.manifest_dir / "train_sp/recordings.jsonl.gz"
|
||||
)
|
||||
sup = load_manifest(
|
||||
self.args.manifest_dir / "train_sp/supervisions.jsonl.gz"
|
||||
)
|
||||
return CutSet.from_manifests(
|
||||
recordings=rec,
|
||||
supervisions=sup,
|
||||
)
|
||||
return load_manifest(
|
||||
self.args.manifest_dir / "train_sp/supervisions.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
rec = load_manifest(self.args.manifest_dir / "dev/recordings.jsonl.gz")
|
||||
sup = load_manifest(
|
||||
self.args.manifest_dir / "dev/supervisions.jsonl.gz"
|
||||
)
|
||||
return CutSet.from_manifests(
|
||||
recordings=rec,
|
||||
supervisions=sup,
|
||||
)
|
||||
return load_manifest(
|
||||
self.args.manifest_dir / "dev/supervisions.jsonl.gz"
|
||||
)
|
1
egs/ubiqus/ASR/transducer_emformer/beam_search.py
Symbolic link
1
egs/ubiqus/ASR/transducer_emformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/beam_search.py
|
549
egs/ubiqus/ASR/transducer_emformer/decode.py
Executable file
549
egs/ubiqus/ASR/transducer_emformer/decode.py
Executable file
@ -0,0 +1,549 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./transducer_emformer/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg-last-n",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch and --avg are ignored and it
|
||||
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||
where xxx is the number of processed batches while
|
||||
saving that checkpoint.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_emformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.avg_last_n > 0:
|
||||
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/ubiqus/ASR/transducer_emformer/decoder.py
Symbolic link
1
egs/ubiqus/ASR/transducer_emformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/decoder.py
|
271
egs/ubiqus/ASR/transducer_emformer/emformer.py
Normal file
271
egs/ubiqus/ASR/transducer_emformer/emformer.py
Normal file
@ -0,0 +1,271 @@
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
from torchaudio.models import Emformer as _Emformer
|
||||
|
||||
LOG_EPSILON = math.log(1e-10)
|
||||
|
||||
|
||||
def unstack_states(
|
||||
states: List[List[torch.Tensor]],
|
||||
) -> List[List[List[torch.Tensor]]]:
|
||||
"""Unstack the emformer state corresponding to a batch of utterances
|
||||
into a list of states, were the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Args:
|
||||
states:
|
||||
A list-of-list of tensors. ``len(states)`` equals to number of
|
||||
layers in the emformer. ``states[i]]`` contains the states for
|
||||
the i-th layer. ``states[i][k]`` is either a 3-D tensor of shape
|
||||
``(T, N, C)`` or a 2-D tensor of shape ``(C, N)``
|
||||
"""
|
||||
batch_size = states[0][0].size(1)
|
||||
num_layers = len(states)
|
||||
|
||||
ans = [None] * batch_size
|
||||
for i in range(batch_size):
|
||||
ans[i] = [[] for _ in range(num_layers)]
|
||||
|
||||
for li, layer in enumerate(states):
|
||||
for s in layer:
|
||||
s_list = s.unbind(dim=1)
|
||||
# We will use stack(dim=1) later in stack_states()
|
||||
for bi, b in enumerate(ans):
|
||||
b[li].append(s_list[bi])
|
||||
return ans
|
||||
|
||||
|
||||
def stack_states(
|
||||
state_list: List[List[List[torch.Tensor]]],
|
||||
) -> List[List[torch.Tensor]]:
|
||||
"""Stack list of emformer states that correspond to separate utterances
|
||||
into a single emformer state so that it can be used as an input for
|
||||
emformer when those utterances are formed into a batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the emformer model for a single utterance.
|
||||
Returns:
|
||||
Return a new state corresponding to a batch of utterances.
|
||||
See the input argument of :func:`unstack_states` for the meaning
|
||||
of the returned tensor.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
ans = []
|
||||
for layer in state_list[0]:
|
||||
# layer is a list of tensors
|
||||
if batch_size > 1:
|
||||
ans.append([[s] for s in layer])
|
||||
# Note: We will stack ans[layer][s][] later to get ans[layer][s]
|
||||
else:
|
||||
ans.append([s.unsqueeze(1) for s in layer])
|
||||
|
||||
for b, states in enumerate(state_list[1:], 1):
|
||||
for li, layer in enumerate(states):
|
||||
for si, s in enumerate(layer):
|
||||
ans[li][si].append(s)
|
||||
if b == batch_size - 1:
|
||||
ans[li][si] = torch.stack(ans[li][si], dim=1)
|
||||
# We will use unbind(dim=1) later in unstack_states()
|
||||
return ans
|
||||
|
||||
|
||||
class Emformer(EncoderInterface):
|
||||
"""This is just a simple wrapper around torchaudio.models.Emformer.
|
||||
We may replace it with our own implementation some time later.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
output_dim: int,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int,
|
||||
num_encoder_layers: int,
|
||||
segment_length: int,
|
||||
left_context_length: int,
|
||||
right_context_length: int,
|
||||
max_memory_size: int = 0,
|
||||
dropout: float = 0.1,
|
||||
subsampling_factor: int = 4,
|
||||
vgg_frontend: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
output_dim:
|
||||
The output dimension of the model.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
segment_length:
|
||||
Number of frames per segment before subsampling.
|
||||
left_context_length:
|
||||
Number of frames in the left context before subsampling.
|
||||
right_context_length:
|
||||
Number of frames in the right context before subsampling.
|
||||
max_memory_size:
|
||||
TODO.
|
||||
dropout:
|
||||
Dropout in encoder.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
Currently, subsampling_factor MUST be 4.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_features -> d_model
|
||||
print(num_features, d_model, output_dim)
|
||||
if vgg_frontend:
|
||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.segment_length = segment_length
|
||||
self.right_context_length = right_context_length
|
||||
|
||||
assert right_context_length % subsampling_factor == 0
|
||||
assert segment_length % subsampling_factor == 0
|
||||
assert left_context_length % subsampling_factor == 0
|
||||
|
||||
left_context_length = left_context_length // subsampling_factor
|
||||
right_context_length = right_context_length // subsampling_factor
|
||||
segment_length = segment_length // subsampling_factor
|
||||
|
||||
self.model = _Emformer(
|
||||
input_dim=d_model,
|
||||
num_heads=nhead,
|
||||
ffn_dim=dim_feedforward,
|
||||
num_layers=num_encoder_layers,
|
||||
segment_length=segment_length,
|
||||
dropout=dropout,
|
||||
activation="relu",
|
||||
left_context_length=left_context_length,
|
||||
right_context_length=right_context_length,
|
||||
max_memory_size=max_memory_size,
|
||||
weight_init_scale_strategy="depthwise",
|
||||
tanh_on_mem=False,
|
||||
negative_inf=-1e8,
|
||||
)
|
||||
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Input features of shape (N, T, C).
|
||||
x_lens:
|
||||
A int32 tensor of shape (N,) containing valid frames in `x` before
|
||||
padding. We have `x.size(1) == x_lens.max()`
|
||||
Returns:
|
||||
Return a tuple containing two tensors:
|
||||
|
||||
- encoder_out, a tensor of shape (N, T', C)
|
||||
- encoder_out_lens, a int32 tensor of shape (N,) containing the
|
||||
valid frames in `encoder_out` before padding
|
||||
"""
|
||||
x = nn.functional.pad(
|
||||
x,
|
||||
# (left, right, top, bottom)
|
||||
# left/right are for the channel dimension, i.e., axis 2
|
||||
# top/bottom are for the time dimension, i.e., axis 1
|
||||
(0, 0, 0, self.right_context_length),
|
||||
value=LOG_EPSILON,
|
||||
) # (N, T, C) -> (N, T+right_context_length, C)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
x_lens = ((x_lens - 1) // 2 - 1) // 2
|
||||
|
||||
emformer_out, emformer_out_lens = self.model(x, x_lens)
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens
|
||||
|
||||
def streaming_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
states: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 2-D tensor of shap containing the number of valid frames for each
|
||||
element in `x` before padding.
|
||||
states:
|
||||
Internal states of the model.
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- encoder_out, a 3-D tensor of shape (N, T, C)
|
||||
- encoder_out_lens: a 1-D tensor of shape (N,)
|
||||
- next_state, internal model states for the next chunk
|
||||
"""
|
||||
x = self.encoder_embed(x)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
x_lens = ((x_lens - 1) // 2 - 1) // 2
|
||||
emformer_out, emformer_out_lens, states = self.model.infer(
|
||||
x, x_lens, states
|
||||
)
|
||||
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens, states
|
289
egs/ubiqus/ASR/transducer_emformer/emformer_raw.py
Normal file
289
egs/ubiqus/ASR/transducer_emformer/emformer_raw.py
Normal file
@ -0,0 +1,289 @@
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
from torchaudio.models import Emformer as _Emformer
|
||||
from torchaudio.models.wav2vec2 import components
|
||||
|
||||
LOG_EPSILON = math.log(1e-10)
|
||||
|
||||
|
||||
def unstack_states(
|
||||
states: List[List[torch.Tensor]],
|
||||
) -> List[List[List[torch.Tensor]]]:
|
||||
"""Unstack the emformer state corresponding to a batch of utterances
|
||||
into a list of states, were the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Args:
|
||||
states:
|
||||
A list-of-list of tensors. ``len(states)`` equals to number of
|
||||
layers in the emformer. ``states[i]]`` contains the states for
|
||||
the i-th layer. ``states[i][k]`` is either a 3-D tensor of shape
|
||||
``(T, N, C)`` or a 2-D tensor of shape ``(C, N)``
|
||||
"""
|
||||
batch_size = states[0][0].size(1)
|
||||
num_layers = len(states)
|
||||
|
||||
ans = [None] * batch_size
|
||||
for i in range(batch_size):
|
||||
ans[i] = [[] for _ in range(num_layers)]
|
||||
|
||||
for li, layer in enumerate(states):
|
||||
for s in layer:
|
||||
s_list = s.unbind(dim=1)
|
||||
# We will use stack(dim=1) later in stack_states()
|
||||
for bi, b in enumerate(ans):
|
||||
b[li].append(s_list[bi])
|
||||
return ans
|
||||
|
||||
|
||||
def stack_states(
|
||||
state_list: List[List[List[torch.Tensor]]],
|
||||
) -> List[List[torch.Tensor]]:
|
||||
"""Stack list of emformer states that correspond to separate utterances
|
||||
into a single emformer state so that it can be used as an input for
|
||||
emformer when those utterances are formed into a batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the emformer model for a single utterance.
|
||||
Returns:
|
||||
Return a new state corresponding to a batch of utterances.
|
||||
See the input argument of :func:`unstack_states` for the meaning
|
||||
of the returned tensor.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
ans = []
|
||||
for layer in state_list[0]:
|
||||
# layer is a list of tensors
|
||||
if batch_size > 1:
|
||||
ans.append([[s] for s in layer])
|
||||
# Note: We will stack ans[layer][s][] later to get ans[layer][s]
|
||||
else:
|
||||
ans.append([s.unsqueeze(1) for s in layer])
|
||||
|
||||
for b, states in enumerate(state_list[1:], 1):
|
||||
for li, layer in enumerate(states):
|
||||
for si, s in enumerate(layer):
|
||||
ans[li][si].append(s)
|
||||
if b == batch_size - 1:
|
||||
ans[li][si] = torch.stack(ans[li][si], dim=1)
|
||||
# We will use unbind(dim=1) later in unstack_states()
|
||||
return ans
|
||||
|
||||
|
||||
class EmformerRaw(EncoderInterface):
|
||||
"""This is just a simple wrapper around torchaudio.models.Emformer.
|
||||
We may replace it with our own implementation some time later.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
output_dim: int,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int,
|
||||
num_encoder_layers: int,
|
||||
segment_length: int,
|
||||
left_context_length: int,
|
||||
right_context_length: int,
|
||||
max_memory_size: int = 0,
|
||||
dropout: float = 0.1,
|
||||
subsampling_factor: int = 4,
|
||||
vgg_frontend: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
output_dim:
|
||||
The output dimension of the model.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
segment_length:
|
||||
Number of frames per segment before subsampling.
|
||||
left_context_length:
|
||||
Number of frames in the left context before subsampling.
|
||||
right_context_length:
|
||||
Number of frames in the right context before subsampling.
|
||||
max_memory_size:
|
||||
TODO.
|
||||
dropout:
|
||||
Dropout in encoder.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
Currently, subsampling_factor MUST be 4.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_features -> d_model
|
||||
extractor_conv_layer_config = (
|
||||
[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2
|
||||
)
|
||||
extractor_mode = "layer_norm"
|
||||
extractor_conv_bias = True
|
||||
|
||||
self.feature_extractor = components._get_feature_extractor(
|
||||
extractor_mode, extractor_conv_layer_config, extractor_conv_bias
|
||||
)
|
||||
print(num_features, d_model, output_dim)
|
||||
# if vgg_frontend:
|
||||
# self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||
# else:
|
||||
# self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.segment_length = segment_length
|
||||
self.right_context_length = right_context_length
|
||||
|
||||
assert right_context_length % subsampling_factor == 0
|
||||
assert segment_length % subsampling_factor == 0
|
||||
assert left_context_length % subsampling_factor == 0
|
||||
|
||||
left_context_length = left_context_length // subsampling_factor
|
||||
right_context_length = right_context_length // subsampling_factor
|
||||
segment_length = segment_length // subsampling_factor
|
||||
|
||||
print(extractor_conv_layer_config[-1][0])
|
||||
print(dim_feedforward)
|
||||
self.model = _Emformer(
|
||||
input_dim=extractor_conv_layer_config[-1][0],
|
||||
num_heads=nhead,
|
||||
ffn_dim=dim_feedforward,
|
||||
num_layers=num_encoder_layers,
|
||||
segment_length=segment_length,
|
||||
dropout=dropout,
|
||||
activation="relu",
|
||||
left_context_length=left_context_length,
|
||||
right_context_length=right_context_length,
|
||||
max_memory_size=max_memory_size,
|
||||
weight_init_scale_strategy="depthwise",
|
||||
tanh_on_mem=False,
|
||||
negative_inf=-1e8,
|
||||
)
|
||||
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Input features of shape (N, T, C).
|
||||
x_lens:
|
||||
A int32 tensor of shape (N,) containing valid frames in `x` before
|
||||
padding. We have `x.size(1) == x_lens.max()`
|
||||
Returns:
|
||||
Return a tuple containing two tensors:
|
||||
|
||||
- encoder_out, a tensor of shape (N, T', C)
|
||||
- encoder_out_lens, a int32 tensor of shape (N,) containing the
|
||||
valid frames in `encoder_out` before padding
|
||||
"""
|
||||
print(x.shape)
|
||||
x = nn.functional.pad(
|
||||
x,
|
||||
# (left, right, top, bottom)
|
||||
# left/right are for the channel dimension, i.e., axis 2
|
||||
# top/bottom are for the time dimension, i.e., axis 1
|
||||
(0, 0, 0, self.right_context_length),
|
||||
value=LOG_EPSILON,
|
||||
) # (N, T, C) -> (N, T+right_context_length, C)
|
||||
|
||||
print(x.shape, x_lens)
|
||||
x, x_lens = self.feature_extractor(x.squeeze(-1), x_lens)
|
||||
x_lens -= 1
|
||||
print(x.shape, x_lens)
|
||||
|
||||
# with warnings.catch_warnings():
|
||||
# warnings.simplefilter("ignore")
|
||||
# # Caution: We assume the subsampling factor is 4!
|
||||
# x_lens = ((x_lens - 1) // 2 - 1) // 2
|
||||
|
||||
emformer_out, emformer_out_lens = self.model(x, x_lens)
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens
|
||||
|
||||
def streaming_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
states: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 2-D tensor of shap containing the number of valid frames for each
|
||||
element in `x` before padding.
|
||||
states:
|
||||
Internal states of the model.
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- encoder_out, a 3-D tensor of shape (N, T, C)
|
||||
- encoder_out_lens: a 1-D tensor of shape (N,)
|
||||
- next_state, internal model states for the next chunk
|
||||
"""
|
||||
x, x_lens = self.feature_extractor(x, x_lens)
|
||||
x_lens -= 1
|
||||
# Sure about that ?
|
||||
|
||||
# with warnings.catch_warnings():
|
||||
# warnings.simplefilter("ignore")
|
||||
# # Caution: We assume the subsampling factor is 4!
|
||||
# x_lens = ((x_lens - 1) // 2 - 1) // 2
|
||||
emformer_out, emformer_out_lens, states = self.model.infer(
|
||||
x, x_lens, states
|
||||
)
|
||||
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens, states
|
1
egs/ubiqus/ASR/transducer_emformer/encoder_interface.py
Symbolic link
1
egs/ubiqus/ASR/transducer_emformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/encoder_interface.py
|
184
egs/ubiqus/ASR/transducer_emformer/export.py
Executable file
184
egs/ubiqus/ASR/transducer_emformer/export.py
Executable file
@ -0,0 +1,184 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./transducer_emformer/export.py \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `transducer_emformer/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./transducer_emformer/decode.py \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 1000 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/ubiqus/ASR/transducer_emformer/joiner.py
Symbolic link
1
egs/ubiqus/ASR/transducer_emformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/joiner.py
|
1
egs/ubiqus/ASR/transducer_emformer/model.py
Symbolic link
1
egs/ubiqus/ASR/transducer_emformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless/model.py
|
104
egs/ubiqus/ASR/transducer_emformer/noam.py
Normal file
104
egs/ubiqus/ASR/transducer_emformer/noam.py
Normal file
@ -0,0 +1,104 @@
|
||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
748
egs/ubiqus/ASR/transducer_emformer/streaming_decode.py
Executable file
748
egs/ubiqus/ASR/transducer_emformer/streaming_decode.py
Executable file
@ -0,0 +1,748 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
||||
from emformer import LOG_EPSILON, stack_states, unstack_states
|
||||
from streaming_feature_extractor import FeatureExtractionStream
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import AttributeDict, setup_logger
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg-last-n",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch and --avg are ignored and it
|
||||
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||
where xxx is the number of processed batches while
|
||||
saving that checkpoint.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_emformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sampling-rate",
|
||||
type=float,
|
||||
default=16000,
|
||||
help="Sample rate of the audio",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class StreamingAudioSamples(object):
|
||||
"""This class takes as input a list of audio samples and returns
|
||||
them in a streaming fashion.
|
||||
"""
|
||||
|
||||
def __init__(self, samples: List[torch.Tensor]) -> None:
|
||||
"""
|
||||
Args:
|
||||
samples:
|
||||
A list of audio samples. Each entry is a 1-D tensor of dtype
|
||||
torch.float32, containing the audio samples of an utterance.
|
||||
"""
|
||||
self.samples = samples
|
||||
self.cur_indexes = [0] * len(self.samples)
|
||||
|
||||
@property
|
||||
def done(self) -> bool:
|
||||
"""Return True if all samples have been processed.
|
||||
Return False otherwise.
|
||||
"""
|
||||
for i, samples in zip(self.cur_indexes, self.samples):
|
||||
if i < samples.numel():
|
||||
return False
|
||||
return True
|
||||
|
||||
def get_next(self) -> List[torch.Tensor]:
|
||||
"""Return a list of audio samples. Each entry may have different
|
||||
lengths. It is OK if an entry contains no samples at all, which
|
||||
means it reaches the end of the utterance.
|
||||
"""
|
||||
ans = []
|
||||
|
||||
num = [1024] * len(self.samples)
|
||||
|
||||
for i in range(len(self.samples)):
|
||||
start = self.cur_indexes[i]
|
||||
end = start + num[i]
|
||||
self.cur_indexes[i] = end
|
||||
|
||||
s = self.samples[i][start:end]
|
||||
ans.append(s)
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
class StreamList(object):
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
context_size: int,
|
||||
decoding_method: str,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
batch_size:
|
||||
Size of this batch.
|
||||
context_size:
|
||||
Context size of the RNN-T decoder model.
|
||||
decoding_method:
|
||||
Decoding method. The possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
"""
|
||||
|
||||
self.streams = [
|
||||
FeatureExtractionStream(
|
||||
context_size=context_size, decoding_method=decoding_method
|
||||
)
|
||||
for _ in range(batch_size)
|
||||
]
|
||||
|
||||
@property
|
||||
def done(self) -> bool:
|
||||
"""Return True if all streams have reached end of utterance.
|
||||
That is, no more audio samples are available for all utterances.
|
||||
"""
|
||||
return all(stream.done for stream in self.streams)
|
||||
|
||||
def accept_waveform(
|
||||
self,
|
||||
audio_samples: List[torch.Tensor],
|
||||
sampling_rate: float,
|
||||
):
|
||||
"""Feed audio samples to each stream.
|
||||
Args:
|
||||
audio_samples:
|
||||
A list of 1-D tensors containing the audio samples for each
|
||||
utterance in the batch. If an entry is empty, it means
|
||||
end-of-utterance has been reached.
|
||||
sampling_rate:
|
||||
Sampling rate of the given audio samples.
|
||||
"""
|
||||
assert len(audio_samples) == len(self.streams)
|
||||
for stream, samples in zip(self.streams, audio_samples):
|
||||
|
||||
if stream.done:
|
||||
assert samples.numel() == 0
|
||||
continue
|
||||
|
||||
stream.accept_waveform(
|
||||
sampling_rate=sampling_rate,
|
||||
waveform=samples,
|
||||
)
|
||||
|
||||
if samples.numel() == 0:
|
||||
stream.input_finished()
|
||||
|
||||
def build_batch(
|
||||
self,
|
||||
chunk_length: int,
|
||||
segment_length: int,
|
||||
) -> Tuple[Optional[torch.Tensor], Optional[List[FeatureExtractionStream]]]:
|
||||
"""
|
||||
Args:
|
||||
chunk_length:
|
||||
Number of frames for each chunk. It equals to
|
||||
``segment_length + right_context_length``.
|
||||
segment_length
|
||||
Number of frames for each segment.
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- features, a 3-D tensor of shape ``(num_active_streams, T, C)``
|
||||
- active_streams, a list of active streams. We say a stream is
|
||||
active when it has enough feature frames to be fed into the
|
||||
encoder model.
|
||||
"""
|
||||
feature_list = []
|
||||
stream_list = []
|
||||
for stream in self.streams:
|
||||
if len(stream.feature_frames) >= chunk_length:
|
||||
# this_chunk is a list of tensors, each of which
|
||||
# has a shape (1, feature_dim)
|
||||
chunk = stream.feature_frames[:chunk_length]
|
||||
stream.feature_frames = stream.feature_frames[segment_length:]
|
||||
features = torch.cat(chunk, dim=0)
|
||||
feature_list.append(features)
|
||||
stream_list.append(stream)
|
||||
elif stream.done and len(stream.feature_frames) > 0:
|
||||
chunk = stream.feature_frames[:chunk_length]
|
||||
stream.feature_frames = []
|
||||
features = torch.cat(chunk, dim=0)
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, chunk_length - features.size(0)),
|
||||
mode="constant",
|
||||
value=LOG_EPSILON,
|
||||
)
|
||||
feature_list.append(features)
|
||||
stream_list.append(stream)
|
||||
|
||||
if len(feature_list) == 0:
|
||||
return None, None
|
||||
|
||||
features = torch.stack(feature_list, dim=0)
|
||||
return features, stream_list
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: nn.Module,
|
||||
streams: List[FeatureExtractionStream],
|
||||
encoder_out: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
||||
the encoder model.
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = model.device
|
||||
T = encoder_out.size(1)
|
||||
|
||||
if streams[0].decoder_out is None:
|
||||
for stream in streams:
|
||||
stream.hyp = [blank_id] * context_size
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).squeeze(1)
|
||||
# decoder_out is of shape (N, decoder_out_dim)
|
||||
else:
|
||||
decoder_out = torch.stack(
|
||||
[stream.decoder_out for stream in streams],
|
||||
dim=0,
|
||||
)
|
||||
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t]
|
||||
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
# logits'shape (batch_size, vocab_size)
|
||||
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v != blank_id:
|
||||
streams[i].hyp.append(v)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(
|
||||
decoder_input,
|
||||
need_pad=False,
|
||||
).squeeze(1)
|
||||
|
||||
for k, stream in enumerate(streams):
|
||||
result = sp.decode(stream.decoding_result())
|
||||
logging.info(f"Partial result {k}:\n{result}")
|
||||
|
||||
decoder_out_list = decoder_out.unbind(dim=0)
|
||||
for i, d in enumerate(decoder_out_list):
|
||||
streams[i].decoder_out = d
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: nn.Module,
|
||||
streams: List[FeatureExtractionStream],
|
||||
encoder_out: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
beam: int = 4,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
||||
the encoder model.
|
||||
sp:
|
||||
The BPE model.
|
||||
beam:
|
||||
Number of active paths during the beam search.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = model.device
|
||||
batch_size = len(streams)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
for stream in streams:
|
||||
if len(stream.hyps) == 0:
|
||||
stream.hyps.add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
)
|
||||
)
|
||||
B = [stream.hyps for stream in streams]
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t]
|
||||
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.stack(
|
||||
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).squeeze(1)
|
||||
# decoder_out is of shape (num_hyps, decoder_output_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(current_encoder_out, decoder_out)
|
||||
# logits is of shape (num_hyps, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(
|
||||
shape=log_probs_shape, value=log_probs
|
||||
)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
streams[i].hyps = B[i]
|
||||
result = sp.decode(streams[i].decoding_result())
|
||||
logging.info(f"Partial result {i}:\n{result}")
|
||||
|
||||
|
||||
def process_features(
|
||||
model: nn.Module,
|
||||
features: torch.Tensor,
|
||||
streams: List[FeatureExtractionStream],
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
) -> None:
|
||||
"""Process features for each stream in parallel.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
features:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
streams:
|
||||
A list of streams of size (N,).
|
||||
params:
|
||||
It is the return value of :func:`get_params`.
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
assert features.ndim == 3
|
||||
assert features.size(0) == len(streams)
|
||||
batch_size = features.size(0)
|
||||
|
||||
device = model.device
|
||||
features = features.to(device)
|
||||
feature_lens = torch.full(
|
||||
(batch_size,),
|
||||
fill_value=features.size(1),
|
||||
device=device,
|
||||
)
|
||||
|
||||
# Caution: It has a limitation as it assumes that
|
||||
# if one of the stream has an empty state, then all other
|
||||
# streams also have empty states.
|
||||
if streams[0].states is None:
|
||||
states = None
|
||||
else:
|
||||
state_list = [stream.states for stream in streams]
|
||||
states = stack_states(state_list)
|
||||
|
||||
(encoder_out, encoder_out_lens, states,) = model.encoder.streaming_forward(
|
||||
features,
|
||||
feature_lens,
|
||||
states,
|
||||
)
|
||||
state_list = unstack_states(states)
|
||||
for i, s in enumerate(state_list):
|
||||
streams[i].states = s
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(
|
||||
model=model,
|
||||
streams=streams,
|
||||
encoder_out=encoder_out,
|
||||
sp=sp,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=streams,
|
||||
encoder_out=encoder_out,
|
||||
sp=sp,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
|
||||
|
||||
def decode_batch(
|
||||
batched_samples: List[torch.Tensor],
|
||||
model: nn.Module,
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
batched_samples:
|
||||
A list of 1-D tensors containing the audio samples of each utterance.
|
||||
model:
|
||||
The RNN-T model.
|
||||
params:
|
||||
It is the return value of :func:`get_params`.
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
# number of frames before subsampling
|
||||
segment_length = model.encoder.segment_length
|
||||
|
||||
right_context_length = model.encoder.right_context_length
|
||||
|
||||
# We add 3 here since the subsampling method is using
|
||||
# ((len - 1) // 2 - 1) // 2)
|
||||
chunk_length = (segment_length + 3) + right_context_length
|
||||
|
||||
batch_size = len(batched_samples)
|
||||
streaming_audio_samples = StreamingAudioSamples(batched_samples)
|
||||
|
||||
stream_list = StreamList(
|
||||
batch_size=batch_size,
|
||||
context_size=params.context_size,
|
||||
decoding_method=params.decoding_method,
|
||||
)
|
||||
|
||||
while not streaming_audio_samples.done:
|
||||
samples = streaming_audio_samples.get_next()
|
||||
stream_list.accept_waveform(
|
||||
audio_samples=samples,
|
||||
sampling_rate=params.sampling_rate,
|
||||
)
|
||||
features, active_streams = stream_list.build_batch(
|
||||
chunk_length=chunk_length,
|
||||
segment_length=segment_length,
|
||||
)
|
||||
if features is not None:
|
||||
process_features(
|
||||
model=model,
|
||||
features=features,
|
||||
streams=active_streams,
|
||||
params=params,
|
||||
sp=sp,
|
||||
)
|
||||
results = []
|
||||
for stream in stream_list.streams:
|
||||
text = sp.decode(stream.decoding_result())
|
||||
results.append(text)
|
||||
return results
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
# Note: params.decoding_method is currently not used.
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-streaming-decode")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
params.device = device
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.avg_last_n > 0:
|
||||
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
|
||||
batch_size = 3
|
||||
|
||||
ground_truth = []
|
||||
batched_samples = []
|
||||
for num, cut in enumerate(test_clean_cuts):
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
batched_samples.append(samples)
|
||||
ground_truth.append(cut.supervisions[0].text)
|
||||
|
||||
if len(batched_samples) >= batch_size:
|
||||
decoded_results = decode_batch(
|
||||
batched_samples=batched_samples,
|
||||
model=model,
|
||||
params=params,
|
||||
sp=sp,
|
||||
)
|
||||
s = "\n"
|
||||
for i, (hyp, ref) in enumerate(zip(decoded_results, ground_truth)):
|
||||
s += f"hyp {i}:\n{hyp}\n"
|
||||
s += f"ref {i}:\n{ref}\n\n"
|
||||
logging.info(s)
|
||||
batched_samples = []
|
||||
ground_truth = []
|
||||
# break after processing the first batch for test purposes
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220410)
|
||||
main()
|
@ -0,0 +1,132 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from beam_search import HypothesisList
|
||||
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||
|
||||
|
||||
def _create_streaming_feature_extractor() -> OnlineFeature:
|
||||
"""Create a CPU streaming feature extractor.
|
||||
|
||||
At present, we assume it returns a fbank feature extractor with
|
||||
fixed options. In the future, we will support passing in the options
|
||||
from outside.
|
||||
|
||||
Returns:
|
||||
Return a CPU streaming feature extractor.
|
||||
"""
|
||||
opts = FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
return OnlineFbank(opts)
|
||||
|
||||
|
||||
class FeatureExtractionStream(object):
|
||||
def __init__(self, context_size: int, decoding_method: str) -> None:
|
||||
"""
|
||||
Args:
|
||||
context_size:
|
||||
Context size of the RNN-T decoder model.
|
||||
decoding_method:
|
||||
Decoding method. The possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
"""
|
||||
self.feature_extractor = _create_streaming_feature_extractor()
|
||||
# It contains a list of 1-D tensors representing the feature frames.
|
||||
self.feature_frames: List[torch.Tensor] = []
|
||||
self.num_fetched_frames = 0
|
||||
# After calling `self.input_finished()`, we set this flag to True
|
||||
self._done = False
|
||||
|
||||
# For the emformer model, it contains the states of each
|
||||
# encoder layer.
|
||||
self.states: Optional[List[List[torch.Tensor]]] = None
|
||||
|
||||
# It use different attributes for different decoding methods.
|
||||
self.context_size = context_size
|
||||
self.decoding_method = decoding_method
|
||||
if decoding_method == "greedy_search":
|
||||
self.hyp: Optional[List[int]] = None
|
||||
self.decoder_out: Optional[torch.Tensor] = None
|
||||
elif decoding_method == "modified_beam_search":
|
||||
self.hyps = HypothesisList()
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {decoding_method}")
|
||||
|
||||
def accept_waveform(
|
||||
self,
|
||||
sampling_rate: float,
|
||||
waveform: torch.Tensor,
|
||||
) -> None:
|
||||
"""Feed audio samples to the feature extractor and compute features
|
||||
if there are enough samples available.
|
||||
|
||||
Caution:
|
||||
The range of the audio samples should match the one used in the
|
||||
training. That is, if you use the range [-1, 1] in the training, then
|
||||
the input audio samples should also be normalized to [-1, 1].
|
||||
|
||||
Args
|
||||
sampling_rate:
|
||||
The sampling rate of the input audio samples. It is used for sanity
|
||||
check to ensure that the input sampling rate equals to the one
|
||||
used in the extractor. If they are not equal, then no resampling
|
||||
will be performed; instead an error will be thrown.
|
||||
waveform:
|
||||
A 1-D torch tensor of dtype torch.float32 containing audio samples.
|
||||
It should be on CPU.
|
||||
"""
|
||||
self.feature_extractor.accept_waveform(
|
||||
sampling_rate=sampling_rate,
|
||||
waveform=waveform,
|
||||
)
|
||||
self._fetch_frames()
|
||||
|
||||
def input_finished(self) -> None:
|
||||
"""Signal that no more audio samples available and the feature
|
||||
extractor should flush the buffered samples to compute frames.
|
||||
"""
|
||||
self.feature_extractor.input_finished()
|
||||
self._fetch_frames()
|
||||
self._done = True
|
||||
|
||||
@property
|
||||
def done(self) -> bool:
|
||||
"""Return True if `self.input_finished()` has been invoked"""
|
||||
return self._done
|
||||
|
||||
def _fetch_frames(self) -> None:
|
||||
"""Fetch frames from the feature extractor"""
|
||||
while self.num_fetched_frames < self.feature_extractor.num_frames_ready:
|
||||
frame = self.feature_extractor.get_frame(self.num_fetched_frames)
|
||||
self.feature_frames.append(frame)
|
||||
self.num_fetched_frames += 1
|
||||
|
||||
def decoding_result(self) -> List[int]:
|
||||
"""Obtain current decoding result."""
|
||||
if self.decoding_method == "greedy_search":
|
||||
return self.hyp[self.context_size :]
|
||||
else:
|
||||
assert self.decoding_method == "modified_beam_search"
|
||||
best_hyp = self.hyps.get_most_probable(length_norm=True)
|
||||
return best_hyp.ys[self.context_size :]
|
1
egs/ubiqus/ASR/transducer_emformer/subsampling.py
Symbolic link
1
egs/ubiqus/ASR/transducer_emformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/subsampling.py
|
107
egs/ubiqus/ASR/transducer_emformer/test_emformer.py
Executable file
107
egs/ubiqus/ASR/transducer_emformer/test_emformer.py
Executable file
@ -0,0 +1,107 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_emformer/test_emformer.py
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from emformer import Emformer, stack_states, unstack_states
|
||||
|
||||
|
||||
def test_emformer():
|
||||
N = 3
|
||||
T = 300
|
||||
C = 80
|
||||
|
||||
output_dim = 500
|
||||
|
||||
encoder = Emformer(
|
||||
num_features=C,
|
||||
output_dim=output_dim,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=20,
|
||||
segment_length=16,
|
||||
left_context_length=120,
|
||||
right_context_length=4,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
|
||||
x = torch.rand(N, T, C)
|
||||
x_lens = torch.randint(100, T, (N,))
|
||||
x_lens[0] = T
|
||||
|
||||
y, y_lens = encoder(x, x_lens)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
assert (y_lens == ((x_lens - 1) // 2 - 1) // 2).all()
|
||||
assert x.size(0) == x.size(0)
|
||||
assert y.size(1) == max(y_lens)
|
||||
assert y.size(2) == output_dim
|
||||
|
||||
num_param = sum([p.numel() for p in encoder.parameters()])
|
||||
print(f"Number of encoder parameters: {num_param}")
|
||||
|
||||
|
||||
def test_emformer_streaming_forward():
|
||||
N = 3
|
||||
C = 80
|
||||
|
||||
output_dim = 500
|
||||
|
||||
encoder = Emformer(
|
||||
num_features=C,
|
||||
output_dim=output_dim,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=20,
|
||||
segment_length=16,
|
||||
left_context_length=120,
|
||||
right_context_length=4,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
|
||||
x = torch.rand(N, 23, C)
|
||||
x_lens = torch.full((N,), 23)
|
||||
y, y_lens, states = encoder.streaming_forward(x=x, x_lens=x_lens)
|
||||
|
||||
state_list = unstack_states(states)
|
||||
states2 = stack_states(state_list)
|
||||
|
||||
for ss, ss2 in zip(states, states2):
|
||||
for s, s2 in zip(ss, ss2):
|
||||
assert torch.allclose(s, s2), f"{s.sum()}, {s2.sum()}"
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
# test_emformer()
|
||||
test_emformer_streaming_forward()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220329)
|
||||
main()
|
53
egs/ubiqus/ASR/transducer_emformer/test_streaming_feature_extractor.py
Executable file
53
egs/ubiqus/ASR/transducer_emformer/test_streaming_feature_extractor.py
Executable file
@ -0,0 +1,53 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_emformer/test_streaming_feature_extractor.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from streaming_feature_extractor import FeatureExtractionStream
|
||||
|
||||
|
||||
def test_streaming_feature_extractor():
|
||||
stream = FeatureExtractionStream(context_size=2, blank_id=0)
|
||||
samples = torch.rand(16000)
|
||||
start = 0
|
||||
while True:
|
||||
n = torch.randint(50, 500, (1,)).item()
|
||||
end = start + n
|
||||
this_chunk = samples[start:end]
|
||||
start = end
|
||||
|
||||
if len(this_chunk) == 0:
|
||||
break
|
||||
stream.accept_waveform(sampling_rate=16000, waveform=this_chunk)
|
||||
print(len(stream.feature_frames))
|
||||
stream.input_finished()
|
||||
print(len(stream.feature_frames))
|
||||
|
||||
|
||||
def main():
|
||||
test_streaming_feature_extractor()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
57
egs/ubiqus/ASR/transducer_emformer/tokenizer.py
Normal file
57
egs/ubiqus/ASR/transducer_emformer/tokenizer.py
Normal file
@ -0,0 +1,57 @@
|
||||
# sp = spm.SentencePieceProcessor()
|
||||
# sp.load(params.bpe_model)
|
||||
|
||||
# # <blk> is defined in local/train_bpe_model.py
|
||||
# params.blank_id = sp.piece_to_id("<blk>")
|
||||
# params.vocab_size = sp.get_piece_size()
|
||||
# sp.encode(texts, out_type=int)
|
||||
from typing import List
|
||||
|
||||
|
||||
import pyonmttok
|
||||
|
||||
|
||||
class PyonmttokProcessor:
|
||||
def __init__(self):
|
||||
self.tok = None
|
||||
|
||||
def load(self, path: str) -> None:
|
||||
args = {
|
||||
"mode": "aggressive",
|
||||
"joiner_annotate": True,
|
||||
"preserve_placeholders": True,
|
||||
"case_markup": True,
|
||||
"soft_case_regions": True,
|
||||
"preserve_segmented_tokens": True,
|
||||
}
|
||||
self.tok = pyonmttok.Tokenizer(
|
||||
**args,
|
||||
bpe_model_path="/data/bpe.pyonmttok",
|
||||
vocabulary_path="/data/vocab"
|
||||
)
|
||||
self.vocab = []
|
||||
self.reverse_vocab = dict()
|
||||
with open("/data/vocab", "r") as f:
|
||||
for i, l in enumerate(f):
|
||||
word = l.rstrip("\n")
|
||||
self.vocab.append(word)
|
||||
self.reverse_vocab[word] = i
|
||||
|
||||
def piece_to_id(self, token: str) -> int:
|
||||
return self.reverse_vocab.get(token, self.reverse_vocab["<unk>"])
|
||||
|
||||
def encode(self, texts: List[str], out_type: type = int) -> List[int]:
|
||||
batch_tokens = [self.tok.tokenize(text)[0] for text in texts]
|
||||
# print(texts)
|
||||
# print(batch_tokens)
|
||||
if out_type == str:
|
||||
return batch_tokens
|
||||
elif out_type == int:
|
||||
return [
|
||||
[self.piece_to_id(token) for token in tokens]
|
||||
for tokens in batch_tokens
|
||||
]
|
||||
raise ValueError
|
||||
|
||||
def get_piece_size(self) -> int:
|
||||
return len(self.vocab)
|
1014
egs/ubiqus/ASR/transducer_emformer/train.py
Executable file
1014
egs/ubiqus/ASR/transducer_emformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1017
egs/ubiqus/ASR/transducer_emformer/train_raw.py
Executable file
1017
egs/ubiqus/ASR/transducer_emformer/train_raw.py
Executable file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user