mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
WIP: Begin to add Contextual positional encoding
This commit is contained in:
parent
b88062292b
commit
06232dce2e
22
egs/librispeech/ASR/zipformer/test_cope.py
Executable file
22
egs/librispeech/ASR/zipformer/test_cope.py
Executable file
@ -0,0 +1,22 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from zipformer import ContextualPositionalEncoding
|
||||
|
||||
|
||||
def test():
|
||||
embed_dim = 5
|
||||
npos_max = 10
|
||||
cope = ContextualPositionalEncoding(embed_dim=embed_dim, npos_max=npos_max)
|
||||
q = torch.rand(2, 3, 4, embed_dim)
|
||||
qk = torch.rand(2, 3, 4, 6)
|
||||
|
||||
p = cope(q=q, qk=qk)
|
||||
print(p.shape)
|
||||
|
||||
|
||||
def main():
|
||||
test()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -95,6 +95,7 @@ class Zipformer2(EncoderInterface):
|
||||
context chunks for causal training; will be rounded to a number of
|
||||
chunks. Must not be less than cnn_module_kernel (after factoring in
|
||||
rounding and downsampling); an error will be thrown if this is violated.
|
||||
use_cope (bool): If true, use contextual positional encoding
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -116,6 +117,7 @@ class Zipformer2(EncoderInterface):
|
||||
causal: bool = False,
|
||||
chunk_size: Tuple[int] = [-1],
|
||||
left_context_frames: Tuple[int] = [-1],
|
||||
use_cope: bool = False,
|
||||
) -> None:
|
||||
super(Zipformer2, self).__init__()
|
||||
|
||||
@ -183,6 +185,7 @@ class Zipformer2(EncoderInterface):
|
||||
warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1),
|
||||
warmup_end=warmup_batches * (i + 2) / (num_encoders + 1),
|
||||
final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5),
|
||||
use_cope=use_cope,
|
||||
)
|
||||
|
||||
if downsampling_factor[i] != 1:
|
||||
@ -1017,6 +1020,7 @@ class Zipformer2Encoder(nn.Module):
|
||||
warmup_end: float,
|
||||
initial_layerdrop_rate: float = 0.5,
|
||||
final_layerdrop_rate: float = 0.05,
|
||||
use_cope: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.encoder_pos = CompactRelPositionalEncoding(
|
||||
@ -1372,6 +1376,54 @@ class SimpleUpsample(torch.nn.Module):
|
||||
return src
|
||||
|
||||
|
||||
class ContextualPositionalEncoding(torch.nn.Module):
|
||||
"""
|
||||
This class implements the following paper:
|
||||
Contextual Position Encoding: Learning to Count What's Important
|
||||
https://arxiv.org/abs/2405.18719
|
||||
|
||||
Args:
|
||||
embed_dim: Embedding dimension.
|
||||
npos_max: The maximum context size.
|
||||
"""
|
||||
|
||||
def __init__(self, embed_dim: int, npos_max: int):
|
||||
super().__init__()
|
||||
self.npos_max = npos_max
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=npos_max,
|
||||
embedding_dim=embed_dim,
|
||||
)
|
||||
|
||||
def forward(self, q: torch.Tensor, qk: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
q (torch.Tensor): A tensor of shape (head, batch, time1, query_head_dim)
|
||||
qk (torch.Tensor): A tensor of shape (head, batch, time1, time2)
|
||||
Returns:
|
||||
Return a tensor of shape (head, batch, time1, npos_max)
|
||||
"""
|
||||
gates = torch.sigmoid(qk)
|
||||
pos = gates.sum(dim=-1, keepdim=True) # (head, batch, dim1, 1)
|
||||
# Note: We don't use cumulative sum here for non-streaming
|
||||
# speech recognition
|
||||
|
||||
pos = pos.clamp(max=self.npos_max - 1)
|
||||
pos_ceil = pos.ceil().long()
|
||||
pos_floor = pos.floor().long()
|
||||
logits_int = torch.matmul(
|
||||
q, self.embedding.weight.t()
|
||||
) # (head, batch, time1, npos_max)
|
||||
logits_cell = logits_int.gather(-1, pos_ceil.expand(*logits_int.shape))
|
||||
logits_floor = logits_int.gather(-1, pos_floor.expand(*logits_int.shape))
|
||||
|
||||
w = pos - pos_floor
|
||||
return logits_cell * w + logits_floor * (1 - w)
|
||||
|
||||
def streaming_forward(self):
|
||||
raise RuntimeError("To be implemented")
|
||||
|
||||
|
||||
class CompactRelPositionalEncoding(torch.nn.Module):
|
||||
"""
|
||||
Relative positional encoding module. This version is "compact" meaning it is able to encode
|
||||
@ -1609,7 +1661,11 @@ class RelPositionMultiheadAttentionWeights(nn.Module):
|
||||
k = x[..., query_dim : 2 * query_dim]
|
||||
# p is the position-encoding query
|
||||
p = x[..., 2 * query_dim :]
|
||||
assert p.shape[-1] == num_heads * pos_head_dim, (p.shape[-1], num_heads, pos_head_dim)
|
||||
assert p.shape[-1] == num_heads * pos_head_dim, (
|
||||
p.shape[-1],
|
||||
num_heads,
|
||||
pos_head_dim,
|
||||
)
|
||||
|
||||
q = self.copy_query(q) # for diagnostics only, does nothing.
|
||||
k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass.
|
||||
|
Loading…
x
Reference in New Issue
Block a user