mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
Minor fixes
This commit is contained in:
parent
899f858659
commit
04c3f9ab53
@ -608,7 +608,7 @@ def greedy_search(
|
||||
# logits is (1, 1, 1, vocab_size)
|
||||
|
||||
if blank_penalty != 0:
|
||||
logits[:,:,:,0] -= blank_penalty
|
||||
logits[:, :, :, 0] -= blank_penalty
|
||||
|
||||
y = logits.argmax().item()
|
||||
if y not in (blank_id, unk_id):
|
||||
@ -1748,7 +1748,7 @@ def beam_search(
|
||||
)
|
||||
|
||||
if blank_penalty != 0:
|
||||
logits[:,:,:,0] -= blank_penalty
|
||||
logits[:, :, :, 0] -= blank_penalty
|
||||
|
||||
# TODO(fangjun): Scale the blank posterior
|
||||
log_prob = (logits / temperature).log_softmax(dim=-1)
|
||||
|
@ -123,9 +123,9 @@ from beam_search import (
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from lhotse.cut import Cut
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
@ -324,7 +324,7 @@ def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
# graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
@ -431,7 +431,10 @@ def decode_one_batch(
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, blank_penalty=params.blank_penalty,
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
@ -461,7 +464,9 @@ def decode_one_batch(
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size,
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
else:
|
||||
@ -493,6 +498,7 @@ def decode_dataset(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
@ -538,6 +544,7 @@ def decode_dataset(
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
decoding_graph=decoding_graph,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
@ -660,6 +667,11 @@ def main():
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
)
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
@ -747,8 +759,6 @@ def main():
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
# word_table = lexicon.word_table
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
@ -756,11 +766,9 @@ def main():
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
# word_table = None
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
# word_table = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
@ -791,8 +799,6 @@ def main():
|
||||
|
||||
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
|
||||
test_dl = [dev_dl, test_net_dl, test_meeting_dl]
|
||||
# test_sets = ["TEST_MEETING"]
|
||||
# test_dl = [test_meeting_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
@ -800,12 +806,14 @@ def main():
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
# word_table=word_table,
|
||||
graph_compiler=graph_compiler,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict,
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
Loading…
x
Reference in New Issue
Block a user