mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
[Ready to be merged] Add RNN-LM to Conformer-CTC decoding (#439)
This commit is contained in:
parent
dc89b61b80
commit
0475d75d15
@ -1299,17 +1299,18 @@ You can find the tensorboard log at: <https://tensorboard.dev/experiment/D7NQc3x
|
||||
|
||||
#### 2021-11-09
|
||||
|
||||
The best WER, as of 2021-11-09, for the librispeech test dataset is below
|
||||
(using HLG decoding + n-gram LM rescoring + attention decoder rescoring):
|
||||
The best WER, as of 2022-06-20, for the librispeech test dataset is below
|
||||
(using HLG decoding + n-gram LM rescoring + attention decoder rescoring + rnn lm rescoring):
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 2.42 | 5.73 |
|
||||
| WER | 2.32 | 5.39 |
|
||||
|
||||
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
|
||||
| ngram_lm_scale | attention_scale |
|
||||
|----------------|-----------------|
|
||||
| 2.0 | 2.0 |
|
||||
|
||||
| ngram_lm_scale | attention_scale | rnn_lm_scale |
|
||||
|----------------|-----------------|--------------|
|
||||
| 0.3 | 2.1 | 2.2 |
|
||||
|
||||
|
||||
To reproduce the above result, use the following commands for training:
|
||||
@ -1330,11 +1331,27 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
--start-epoch 0 \
|
||||
--num-epochs 90
|
||||
# Note: It trains for 90 epochs, but the best WER is at epoch-77.pt
|
||||
|
||||
# Train the RNN-LM
|
||||
cd icefall
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
./rnn_lm/train.py \
|
||||
--exp-dir rnn_lm/exp_2048_3_tied \
|
||||
--start-epoch 0 \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--use-fp16 1 \
|
||||
--embedding-dim 2048 \
|
||||
--hidden-dim 2048 \
|
||||
--num-layers 3 \
|
||||
--batch-size 500 \
|
||||
--tie-weights true
|
||||
```
|
||||
|
||||
and the following command for decoding
|
||||
|
||||
```
|
||||
rnn_dir=$(git rev-parse --show-toplevel)/icefall/rnn_lm
|
||||
./conformer_ctc/decode.py \
|
||||
--exp-dir conformer_ctc/exp_500_att0.8 \
|
||||
--lang-dir data/lang_bpe_500 \
|
||||
@ -1344,13 +1361,23 @@ and the following command for decoding
|
||||
--num-paths 1000 \
|
||||
--epoch 77 \
|
||||
--avg 55 \
|
||||
--method attention-decoder \
|
||||
--nbest-scale 0.5
|
||||
--nbest-scale 0.5 \
|
||||
--rnn-lm-exp-dir ${rnn_dir}/exp_2048_3_tied \
|
||||
--rnn-lm-epoch 29 \
|
||||
--rnn-lm-avg 3 \
|
||||
--rnn-lm-embedding-dim 2048 \
|
||||
--rnn-lm-hidden-dim 2048 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights true \
|
||||
--method rnn-lm
|
||||
```
|
||||
|
||||
You can find the pre-trained model by visiting
|
||||
You can find the Conformer-CTC pre-trained model by visiting
|
||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09>
|
||||
|
||||
and the RNN-LM pre-trained model:
|
||||
<https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||
|
||||
The tensorboard log for training is available at
|
||||
<https://tensorboard.dev/experiment/hZDWrZfaSqOMqtW0NEfXKg/#scalars>
|
||||
|
||||
|
@ -30,7 +30,7 @@ from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
@ -38,15 +38,19 @@ from icefall.decode import (
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_rnn_lm,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
load_averaged_model,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
@ -93,7 +97,9 @@ def get_parser():
|
||||
is the decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||
lattice, the path with the highest score is the decoding result.
|
||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
- (6) rnn-lm. Rescoring with attention-decoder and RNN LM. We assume
|
||||
you have trained an RNN LM using ./rnn_lm/train.py
|
||||
- (7) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
@ -105,7 +111,7 @@ def get_parser():
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
@ -116,7 +122,7 @@ def get_parser():
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
@ -139,11 +145,67 @@ def get_parser():
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The LM dir.
|
||||
help="""The n-gram LM dir.
|
||||
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -173,6 +235,7 @@ def get_params() -> AttributeDict:
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
@ -205,6 +268,8 @@ def decode_one_batch(
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
@ -330,6 +395,7 @@ def decode_one_batch(
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
@ -357,8 +423,6 @@ def decode_one_batch(
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
# TODO: pass `lattice` instead of `rescored_lattice` to
|
||||
# `rescore_with_attention_decoder`
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
@ -370,6 +434,26 @@ def decode_one_batch(
|
||||
eos_id=eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "rnn-lm":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_rnn_lm(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
blank_id=0,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.method}"
|
||||
|
||||
@ -388,6 +472,7 @@ def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
@ -405,6 +490,8 @@ def decode_dataset(
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
@ -442,6 +529,7 @@ def decode_dataset(
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
@ -490,7 +578,7 @@ def save_results(
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
if params.method == "attention-decoder":
|
||||
if params.method in ("attention-decoder", "rnn-lm"):
|
||||
# Set it to False since there are too many logs.
|
||||
enable_log = False
|
||||
else:
|
||||
@ -566,6 +654,10 @@ def main():
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
params.num_classes = num_classes
|
||||
params.sos_id = sos_id
|
||||
params.eos_id = eos_id
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
@ -590,6 +682,7 @@ def main():
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
):
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
@ -621,7 +714,11 @@ def main():
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
@ -648,20 +745,40 @@ def main():
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
model = load_averaged_model(
|
||||
params.exp_dir, model, params.epoch, params.avg, device
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
rnn_lm_model = None
|
||||
if params.method == "rnn-lm":
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.num_classes,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
if params.rnn_lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
else:
|
||||
rnn_lm_model = load_averaged_model(
|
||||
params.rnn_lm_exp_dir,
|
||||
rnn_lm_model,
|
||||
params.rnn_lm_epoch,
|
||||
params.rnn_lm_avg,
|
||||
device,
|
||||
)
|
||||
rnn_lm_model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
@ -678,6 +795,7 @@ def main():
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
|
@ -23,6 +23,7 @@ This file downloads the following LibriSpeech LM files:
|
||||
- 4-gram.arpa.gz
|
||||
- librispeech-vocab.txt
|
||||
- librispeech-lexicon.txt
|
||||
- librispeech-lm-norm.txt.gz
|
||||
|
||||
from http://www.openslr.org/resources/11
|
||||
and save them in the user provided directory.
|
||||
@ -61,6 +62,7 @@ def main(out_dir: str):
|
||||
"4-gram.arpa.gz",
|
||||
"librispeech-vocab.txt",
|
||||
"librispeech-lexicon.txt",
|
||||
"librispeech-lm-norm.txt.gz",
|
||||
)
|
||||
|
||||
for f in tqdm(files_to_download, desc="Downloading LibriSpeech LM files"):
|
||||
|
172
egs/librispeech/ASR/local/prepare_lm_training_data.py
Executable file
172
egs/librispeech/ASR/local/prepare_lm_training_data.py
Executable file
@ -0,0 +1,172 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Daniel Povey
|
||||
# Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script takes a `bpe.model` and a text file such as
|
||||
./download/lm/librispeech-lm-norm.txt
|
||||
and outputs the LM training data to a supplied directory such
|
||||
as data/lm_training_bpe_500. The format is as follows:
|
||||
|
||||
It creates a PyTorch archive (.pt file), say data/lm_training.pt, which is a
|
||||
representation of a dict with the following format:
|
||||
|
||||
'words' -> a k2.RaggedTensor of two axes [word][token] with dtype torch.int32
|
||||
containing the BPE representations of each word, indexed by
|
||||
integer word ID. (These integer word IDS are present in
|
||||
'lm_data'). The sentencepiece object can be used to turn the
|
||||
words and BPE units into string form.
|
||||
'sentences' -> a k2.RaggedTensor of two axes [sentence][word] with dtype
|
||||
torch.int32 containing all the sentences, as word-ids (we don't
|
||||
output the string form of this directly but it can be worked out
|
||||
together with 'words' and the bpe.model).
|
||||
'sentence_lengths' -> a 1-D torch.Tensor of dtype torch.int32, containing
|
||||
number of BPE tokens of each sentence.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="Input BPE model, e.g. data/bpe_500/bpe.model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="""Input LM training data as text, e.g.
|
||||
download/pb.train.txt""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lm-archive",
|
||||
type=str,
|
||||
help="""Path to output archive, e.g. data/bpe_500/lm_data.pt;
|
||||
look at the source of this script to see the format.""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
if Path(args.lm_archive).exists():
|
||||
logging.warning(f"{args.lm_archive} exists - skipping")
|
||||
return
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(args.bpe_model)
|
||||
|
||||
# word2index is a dictionary from words to integer ids. No need to reserve
|
||||
# space for epsilon, etc.; the words are just used as a convenient way to
|
||||
# compress the sequences of BPE pieces.
|
||||
word2index = dict()
|
||||
|
||||
word2bpe = [] # Will be a list-of-list-of-int, representing BPE pieces.
|
||||
sentences = [] # Will be a list-of-list-of-int, representing word-ids.
|
||||
|
||||
if "librispeech-lm-norm" in args.lm_data:
|
||||
num_lines_in_total = 40418261.0
|
||||
step = 5000000
|
||||
elif "valid" in args.lm_data:
|
||||
num_lines_in_total = 5567.0
|
||||
step = 3000
|
||||
elif "test" in args.lm_data:
|
||||
num_lines_in_total = 5559.0
|
||||
step = 3000
|
||||
else:
|
||||
num_lines_in_total = None
|
||||
step = None
|
||||
|
||||
processed = 0
|
||||
|
||||
with open(args.lm_data) as f:
|
||||
while True:
|
||||
line = f.readline()
|
||||
if line == "":
|
||||
break
|
||||
|
||||
if step and processed % step == 0:
|
||||
logging.info(
|
||||
f"Processed number of lines: {processed} "
|
||||
f"({processed/num_lines_in_total*100: .3f}%)"
|
||||
)
|
||||
processed += 1
|
||||
|
||||
line_words = line.split()
|
||||
for w in line_words:
|
||||
if w not in word2index:
|
||||
w_bpe = sp.encode(w)
|
||||
word2index[w] = len(word2bpe)
|
||||
word2bpe.append(w_bpe)
|
||||
sentences.append([word2index[w] for w in line_words])
|
||||
|
||||
logging.info("Constructing ragged tensors")
|
||||
words = k2.ragged.RaggedTensor(word2bpe)
|
||||
sentences = k2.ragged.RaggedTensor(sentences)
|
||||
|
||||
output = dict(words=words, sentences=sentences)
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
logging.info(f"Computing sentence lengths, num_sentences: {num_sentences}")
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
if step and i % step == 0:
|
||||
logging.info(
|
||||
f"Processed number of lines: {i} "
|
||||
f"({i/num_sentences*100: .3f}%)"
|
||||
)
|
||||
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
output["sentence_lengths"] = torch.tensor(
|
||||
sentence_lengths, dtype=torch.int32
|
||||
)
|
||||
|
||||
torch.save(output, args.lm_archive)
|
||||
logging.info(f"Saved to {args.lm_archive}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
1
egs/librispeech/ASR/local/sort_lm_training_data.py
Symbolic link
1
egs/librispeech/ASR/local/sort_lm_training_data.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../ptb/LM/local/sort_lm_training_data.py
|
@ -38,7 +38,6 @@ def get_args():
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain the training corpus: transcript_words.txt.
|
||||
The generated bpe.model is saved to this directory.
|
||||
""",
|
||||
)
|
||||
|
@ -24,6 +24,7 @@ stop_stage=100
|
||||
# - 4-gram.arpa
|
||||
# - librispeech-vocab.txt
|
||||
# - librispeech-lexicon.txt
|
||||
# - librispeech-lm-norm.txt.gz
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
@ -40,9 +41,9 @@ dl_dir=$PWD/download
|
||||
# It will generate data/lang_bpe_xxx,
|
||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
# 5000
|
||||
# 2000
|
||||
# 1000
|
||||
5000
|
||||
2000
|
||||
1000
|
||||
500
|
||||
)
|
||||
|
||||
@ -278,3 +279,99 @@ if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
./local/compile_lg.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
log "Stage 11: Generate LM training data"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Processing vocab_size == ${vocab_size}"
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $lang_dir/bpe.model \
|
||||
--lm-data $dl_dir/lm/librispeech-lm-norm.txt \
|
||||
--lm-archive $out_dir/lm_data.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
log "Stage 12: Generate LM validation data"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Processing vocab_size == ${vocab_size}"
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
|
||||
if [ ! -f $out_dir/valid.txt ]; then
|
||||
files=$(
|
||||
find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt"
|
||||
find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > $out_dir/valid.txt
|
||||
fi
|
||||
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $lang_dir/bpe.model \
|
||||
--lm-data $out_dir/valid.txt \
|
||||
--lm-archive $out_dir/lm_data-valid.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
||||
log "Stage 13: Generate LM test data"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Processing vocab_size == ${vocab_size}"
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
|
||||
if [ ! -f $out_dir/test.txt ]; then
|
||||
files=$(
|
||||
find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt"
|
||||
find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > $out_dir/test.txt
|
||||
fi
|
||||
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $lang_dir/bpe.model \
|
||||
--lm-data $out_dir/test.txt \
|
||||
--lm-archive $out_dir/lm_data-test.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
||||
log "Stage 14: Sort LM training data"
|
||||
# Sort LM training data by sentence length in descending order
|
||||
# for ease of training.
|
||||
#
|
||||
# Sentence length equals to the number of BPE tokens
|
||||
# in a sentence.
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data.pt \
|
||||
--out-statistics $out_dir/statistics.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data-valid.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
||||
--out-statistics $out_dir/statistics-valid.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data-test.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
||||
--out-statistics $out_dir/statistics-test.txt
|
||||
done
|
||||
fi
|
||||
|
18
egs/ptb/LM/README.md
Normal file
18
egs/ptb/LM/README.md
Normal file
@ -0,0 +1,18 @@
|
||||
## Description
|
||||
|
||||
(Note: the experiments here are only about language modeling)
|
||||
|
||||
ptb is short for Penn Treebank.
|
||||
|
||||
|
||||
About the Penn Treebank corpus:
|
||||
- This corpus is free for research purposes
|
||||
- ptb.train.txt: train set
|
||||
- ptb.valid.txt: development set (should be used just for tuning hyper-parameters, but not for training)
|
||||
- ptb.test.txt: test set for reporting perplexity
|
||||
|
||||
You can download the dataset from one of the following URLs:
|
||||
|
||||
- https://github.com/townie/PTB-dataset-from-Tomas-Mikolov-s-webpage
|
||||
- http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
|
||||
- https://deepai.org/dataset/penn-treebank
|
1
egs/ptb/LM/local/prepare_lm_training_data.py
Symbolic link
1
egs/ptb/LM/local/prepare_lm_training_data.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../librispeech/ASR/local/prepare_lm_training_data.py
|
143
egs/ptb/LM/local/sort_lm_training_data.py
Executable file
143
egs/ptb/LM/local/sort_lm_training_data.py
Executable file
@ -0,0 +1,143 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file takes as input the filename of LM training data
|
||||
generated by ./local/prepare_lm_training_data.py and sorts
|
||||
it by sentence length.
|
||||
|
||||
Sentence length equals to the number of BPE tokens in a sentence.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--in-lm-data",
|
||||
type=str,
|
||||
help="Input LM training data, e.g., data/bpe_500/lm_data.pt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--out-lm-data",
|
||||
type=str,
|
||||
help="Input LM training data, e.g., data/bpe_500/sorted_lm_data.pt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--out-statistics",
|
||||
type=str,
|
||||
help="Statistics about LM training data., data/bpe_500/statistics.txt",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
in_lm_data = Path(args.in_lm_data)
|
||||
out_lm_data = Path(args.out_lm_data)
|
||||
assert in_lm_data.is_file(), f"{in_lm_data}"
|
||||
if out_lm_data.is_file():
|
||||
logging.warning(f"{out_lm_data} exists - skipping")
|
||||
return
|
||||
data = torch.load(in_lm_data)
|
||||
words2bpe = data["words"]
|
||||
sentences = data["sentences"]
|
||||
sentence_lengths = data["sentence_lengths"]
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
assert num_sentences == sentence_lengths.numel(), (
|
||||
num_sentences,
|
||||
sentence_lengths.numel(),
|
||||
)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
|
||||
sorted_sentences = sentences[indices.to(torch.int32)]
|
||||
sorted_sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
# Check that sentences are ordered by length
|
||||
assert num_sentences == sorted_sentences.dim0, (
|
||||
num_sentences,
|
||||
sorted_sentences.dim0,
|
||||
)
|
||||
|
||||
cur = None
|
||||
for i in range(num_sentences):
|
||||
word_ids = sorted_sentences[i]
|
||||
token_ids = words2bpe[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
if cur is not None:
|
||||
assert cur >= token_ids.numel(), (cur, token_ids.numel())
|
||||
|
||||
cur = token_ids.numel()
|
||||
assert cur == sorted_sentence_lengths[i]
|
||||
|
||||
data["sentences"] = sorted_sentences
|
||||
data["sentence_lengths"] = sorted_sentence_lengths
|
||||
torch.save(data, args.out_lm_data)
|
||||
logging.info(f"Saved to {args.out_lm_data}")
|
||||
|
||||
statistics = Path(args.out_statistics)
|
||||
|
||||
# Write statistics
|
||||
num_words = sorted_sentences.numel()
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
max_sentence_length = sentence_lengths[indices[0]]
|
||||
min_sentence_length = sentence_lengths[indices[-1]]
|
||||
|
||||
step = 10
|
||||
hist, bins = np.histogram(
|
||||
sentence_lengths.numpy(),
|
||||
bins=np.arange(1, max_sentence_length + step, step),
|
||||
)
|
||||
|
||||
histogram = np.stack((bins[:-1], hist)).transpose()
|
||||
|
||||
with open(statistics, "w") as f:
|
||||
f.write(f"num_sentences: {num_sentences}\n")
|
||||
f.write(f"num_words: {num_words}\n")
|
||||
f.write(f"num_tokens: {num_tokens}\n")
|
||||
f.write(f"max_sentence_length: {max_sentence_length}\n")
|
||||
f.write(f"min_sentence_length: {min_sentence_length}\n")
|
||||
f.write("histogram:\n")
|
||||
f.write(" bin count percent\n")
|
||||
for row in histogram:
|
||||
f.write(
|
||||
f"{int(row[0]):>5} {int(row[1]):>5} "
|
||||
f"{100.*row[1]/num_sentences:.3f}%\n"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
62
egs/ptb/LM/local/test_prepare_lm_training_data.py
Executable file
62
egs/ptb/LM/local/test_prepare_lm_training_data.py
Executable file
@ -0,0 +1,62 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
|
||||
|
||||
def main():
|
||||
lm_training_data = Path("./data/bpe_500/lm_data.pt")
|
||||
bpe_model = Path("./data/bpe_500/bpe.model")
|
||||
if not lm_training_data.exists():
|
||||
logging.warning(f"{lm_training_data} does not exist - skipping")
|
||||
return
|
||||
|
||||
if not bpe_model.exists():
|
||||
logging.warning(f"{bpe_model} does not exist - skipping")
|
||||
return
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(bpe_model))
|
||||
|
||||
data = torch.load(lm_training_data)
|
||||
words2bpe = data["words"]
|
||||
sentences = data["sentences"]
|
||||
|
||||
ss = []
|
||||
unk = sp.decode(sp.unk_id()).strip()
|
||||
for i in range(10):
|
||||
s = sp.decode(words2bpe[sentences[i]].values.tolist())
|
||||
s = s.replace(unk, "<unk>")
|
||||
ss.append(s)
|
||||
|
||||
for s in ss:
|
||||
print(s)
|
||||
# You can compare the output with the first 10 lines of ptb.train.txt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/ptb/LM/local/train_bpe_model.py
Symbolic link
1
egs/ptb/LM/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../librispeech/ASR/local/train_bpe_model.py
|
115
egs/ptb/LM/prepare.sh
Executable file
115
egs/ptb/LM/prepare.sh
Executable file
@ -0,0 +1,115 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=15
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
dl_dir=$PWD/download
|
||||
# The following files will be downloaded to $dl_dir
|
||||
# - ptb.train.txt
|
||||
# - ptb.valid.txt
|
||||
# - ptb.test.txt
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# vocab size for sentence piece models.
|
||||
# It will generate data/bpe_xxx, data/bpe_yyy
|
||||
# if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
500
|
||||
1000
|
||||
2000
|
||||
5000
|
||||
)
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
mkdir -p $dl_dir
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "Stage -1: Download data"
|
||||
if [ ! -f $dl_dir/.complete ]; then
|
||||
url=https://raw.githubusercontent.com/townie/PTB-dataset-from-Tomas-Mikolov-s-webpage/master/data/
|
||||
wget --no-verbose --directory-prefix $dl_dir $url/ptb.train.txt
|
||||
wget --no-verbose --directory-prefix $dl_dir $url/ptb.valid.txt
|
||||
wget --no-verbose --directory-prefix $dl_dir $url/ptb.test.txt
|
||||
touch $dl_dir/.complete
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Train BPE model"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
out_dir=data/bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
./local/train_bpe_model.py \
|
||||
--out-dir $out_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $dl_dir/ptb.train.txt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Generate LM training data"
|
||||
# Note: ptb.train.txt has already been normalized
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
out_dir=data/bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $out_dir/bpe.model \
|
||||
--lm-data $dl_dir/ptb.train.txt \
|
||||
--lm-archive $out_dir/lm_data.pt
|
||||
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $out_dir/bpe.model \
|
||||
--lm-data $dl_dir/ptb.valid.txt \
|
||||
--lm-archive $out_dir/lm_data-valid.pt
|
||||
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $out_dir/bpe.model \
|
||||
--lm-data $dl_dir/ptb.test.txt \
|
||||
--lm-archive $out_dir/lm_data-test.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Sort LM training data"
|
||||
# Sort LM training data generated in stage 1
|
||||
# by sentence length in descending order
|
||||
# for ease of training.
|
||||
#
|
||||
# Sentence length equals to the number of BPE tokens
|
||||
# in a sentence.
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
out_dir=data/bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data.pt \
|
||||
--out-statistics $out_dir/statistics.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data-valid.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
||||
--out-statistics $out_dir/statistics-valid.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data-test.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
||||
--out-statistics $out_dir/statistics-test.txt
|
||||
done
|
||||
fi
|
1
egs/ptb/LM/shared
Symbolic link
1
egs/ptb/LM/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
@ -20,7 +20,34 @@ from typing import Dict, List, Optional, Union
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.utils import get_texts
|
||||
from icefall.utils import add_eos, add_sos, get_texts
|
||||
|
||||
DEFAULT_LM_SCALE = [
|
||||
0.01,
|
||||
0.05,
|
||||
0.08,
|
||||
0.1,
|
||||
0.3,
|
||||
0.5,
|
||||
0.6,
|
||||
0.7,
|
||||
0.9,
|
||||
1.0,
|
||||
1.1,
|
||||
1.2,
|
||||
1.3,
|
||||
1.5,
|
||||
1.7,
|
||||
1.9,
|
||||
2.0,
|
||||
2.1,
|
||||
2.2,
|
||||
2.3,
|
||||
2.5,
|
||||
3.0,
|
||||
4.0,
|
||||
5.0,
|
||||
]
|
||||
|
||||
|
||||
def _intersect_device(
|
||||
@ -952,3 +979,161 @@ def rescore_with_attention_decoder(
|
||||
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}"
|
||||
ans[key] = best_path
|
||||
return ans
|
||||
|
||||
|
||||
def rescore_with_rnn_lm(
|
||||
lattice: k2.Fsa,
|
||||
num_paths: int,
|
||||
rnn_lm_model: torch.nn.Module,
|
||||
model: torch.nn.Module,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: Optional[torch.Tensor],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
blank_id: int,
|
||||
nbest_scale: float = 1.0,
|
||||
ngram_lm_scale: Optional[float] = None,
|
||||
attention_scale: Optional[float] = None,
|
||||
rnn_lm_scale: Optional[float] = None,
|
||||
use_double_scores: bool = True,
|
||||
) -> Dict[str, k2.Fsa]:
|
||||
"""This function extracts `num_paths` paths from the given lattice and uses
|
||||
an attention decoder to rescore them. The path with the highest score is
|
||||
the decoding output.
|
||||
|
||||
Args:
|
||||
lattice:
|
||||
An FsaVec with axes [utt][state][arc].
|
||||
num_paths:
|
||||
Number of paths to extract from the given lattice for rescoring.
|
||||
model:
|
||||
A transformer model. See the class "Transformer" in
|
||||
conformer_ctc/transformer.py for its interface.
|
||||
memory:
|
||||
The encoder memory of the given model. It is the output of
|
||||
the last torch.nn.TransformerEncoder layer in the given model.
|
||||
Its shape is `(T, N, C)`.
|
||||
memory_key_padding_mask:
|
||||
The padding mask for memory with shape `(N, T)`.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
nbest_scale:
|
||||
It's the scale applied to `lattice.scores`. A smaller value
|
||||
leads to more unique paths at the risk of missing the correct path.
|
||||
ngram_lm_scale:
|
||||
Optional. It specifies the scale for n-gram LM scores.
|
||||
attention_scale:
|
||||
Optional. It specifies the scale for attention decoder scores.
|
||||
rnn_lm_scale:
|
||||
Optional. It specifies the scale for RNN LM scores.
|
||||
Returns:
|
||||
A dict of FsaVec, whose key contains a string
|
||||
ngram_lm_scale_attention_scale and the value is the
|
||||
best decoding path for each utterance in the lattice.
|
||||
"""
|
||||
nbest = Nbest.from_lattice(
|
||||
lattice=lattice,
|
||||
num_paths=num_paths,
|
||||
use_double_scores=use_double_scores,
|
||||
nbest_scale=nbest_scale,
|
||||
)
|
||||
# nbest.fsa.scores are all 0s at this point
|
||||
|
||||
nbest = nbest.intersect(lattice)
|
||||
# Now nbest.fsa has its scores set.
|
||||
# Also, nbest.fsa inherits the attributes from `lattice`.
|
||||
assert hasattr(nbest.fsa, "lm_scores")
|
||||
|
||||
am_scores = nbest.compute_am_scores()
|
||||
ngram_lm_scores = nbest.compute_lm_scores()
|
||||
|
||||
# The `tokens` attribute is set inside `compile_hlg.py`
|
||||
assert hasattr(nbest.fsa, "tokens")
|
||||
assert isinstance(nbest.fsa.tokens, torch.Tensor)
|
||||
|
||||
path_to_utt_map = nbest.shape.row_ids(1).to(torch.long)
|
||||
# the shape of memory is (T, N, C), so we use axis=1 here
|
||||
expanded_memory = memory.index_select(1, path_to_utt_map)
|
||||
|
||||
if memory_key_padding_mask is not None:
|
||||
# The shape of memory_key_padding_mask is (N, T), so we
|
||||
# use axis=0 here.
|
||||
expanded_memory_key_padding_mask = memory_key_padding_mask.index_select(
|
||||
0, path_to_utt_map
|
||||
)
|
||||
else:
|
||||
expanded_memory_key_padding_mask = None
|
||||
|
||||
# remove axis corresponding to states.
|
||||
tokens_shape = nbest.fsa.arcs.shape().remove_axis(1)
|
||||
tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens)
|
||||
tokens = tokens.remove_values_leq(0)
|
||||
token_ids = tokens.tolist()
|
||||
|
||||
if len(token_ids) == 0:
|
||||
print("Warning: rescore_with_attention_decoder(): empty token-ids")
|
||||
return None
|
||||
|
||||
nll = model.decoder_nll(
|
||||
memory=expanded_memory,
|
||||
memory_key_padding_mask=expanded_memory_key_padding_mask,
|
||||
token_ids=token_ids,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
assert nll.ndim == 2
|
||||
assert nll.shape[0] == len(token_ids)
|
||||
|
||||
attention_scores = -nll.sum(dim=1)
|
||||
|
||||
# Now for RNN LM
|
||||
sos_tokens = add_sos(tokens, sos_id)
|
||||
tokens_eos = add_eos(tokens, eos_id)
|
||||
sos_tokens_row_splits = sos_tokens.shape.row_splits(1)
|
||||
sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1]
|
||||
|
||||
x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id)
|
||||
y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
x_tokens = x_tokens.to(torch.int64)
|
||||
y_tokens = y_tokens.to(torch.int64)
|
||||
sentence_lengths = sentence_lengths.to(torch.int64)
|
||||
|
||||
rnn_lm_nll = rnn_lm_model(x=x_tokens, y=y_tokens, lengths=sentence_lengths)
|
||||
assert rnn_lm_nll.ndim == 2
|
||||
assert rnn_lm_nll.shape[0] == len(token_ids)
|
||||
|
||||
rnn_lm_scores = -1 * rnn_lm_nll.sum(dim=1)
|
||||
|
||||
ngram_lm_scale_list = DEFAULT_LM_SCALE
|
||||
attention_scale_list = DEFAULT_LM_SCALE
|
||||
rnn_lm_scale_list = DEFAULT_LM_SCALE
|
||||
|
||||
if ngram_lm_scale:
|
||||
ngram_lm_scale_list = [ngram_lm_scale]
|
||||
|
||||
if attention_scale:
|
||||
attention_scale_list = [attention_scale]
|
||||
|
||||
if rnn_lm_scale:
|
||||
rnn_lm_scale_list = [rnn_lm_scale]
|
||||
|
||||
ans = dict()
|
||||
for n_scale in ngram_lm_scale_list:
|
||||
for a_scale in attention_scale_list:
|
||||
for r_scale in rnn_lm_scale_list:
|
||||
tot_scores = (
|
||||
am_scores.values
|
||||
+ n_scale * ngram_lm_scores.values
|
||||
+ a_scale * attention_scores
|
||||
+ r_scale * rnn_lm_scores
|
||||
)
|
||||
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
|
||||
max_indexes = ragged_tot_scores.argmax()
|
||||
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||
|
||||
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}_rnn_lm_scale_{r_scale}" # noqa
|
||||
ans[key] = best_path
|
||||
return ans
|
||||
|
@ -21,14 +21,46 @@ import torch
|
||||
from torch import distributed as dist
|
||||
|
||||
|
||||
def setup_dist(rank, world_size, master_port=None):
|
||||
def setup_dist(rank, world_size, master_port=None, use_ddp_launch=False):
|
||||
"""
|
||||
rank and world_size are used only if use_ddp_launch is False.
|
||||
"""
|
||||
if "MASTER_ADDR" not in os.environ:
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
|
||||
if "MASTER_PORT" not in os.environ:
|
||||
os.environ["MASTER_PORT"] = (
|
||||
"12354" if master_port is None else str(master_port)
|
||||
)
|
||||
|
||||
if use_ddp_launch is False:
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
else:
|
||||
dist.init_process_group("nccl")
|
||||
|
||||
|
||||
def cleanup_dist():
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
def get_world_size():
|
||||
if "WORLD_SIZE" in os.environ:
|
||||
return int(os.environ["WORLD_SIZE"])
|
||||
if dist.is_available() and dist.is_initialized():
|
||||
return dist.get_world_size()
|
||||
else:
|
||||
return 1
|
||||
|
||||
|
||||
def get_rank():
|
||||
if "RANK" in os.environ:
|
||||
return int(os.environ["RANK"])
|
||||
elif dist.is_available() and dist.is_initialized():
|
||||
return dist.rank()
|
||||
else:
|
||||
return 1
|
||||
|
||||
|
||||
def get_local_rank():
|
||||
return int(os.environ.get("LOCAL_RANK", 0))
|
||||
|
237
icefall/rnn_lm/compute_perplexity.py
Executable file
237
icefall/rnn_lm/compute_perplexity.py
Executable file
@ -0,0 +1,237 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/compute_perplexity.py \
|
||||
--epoch 4 \
|
||||
--avg 2 \
|
||||
--lm-data ./data/bpe_500/sorted_lm_data-test.pt
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from dataset import get_dataloader
|
||||
from model import RnnLmModel
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=49,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="Path to the LM test data for computing perplexity",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sent-len",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="SOS ID",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--eos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="EOS ID",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-id",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Blank ID",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lm_data = Path(args.lm_data)
|
||||
|
||||
params = AttributeDict(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ppl/")
|
||||
logging.info("Computing perplexity started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
num_param_requires_grad = sum(
|
||||
[p.numel() for p in model.parameters() if p.requires_grad]
|
||||
)
|
||||
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
logging.info(
|
||||
f"Number of model parameters (requires_grad): "
|
||||
f"{num_param_requires_grad} "
|
||||
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM test data from {params.lm_data}")
|
||||
test_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=False,
|
||||
params=params,
|
||||
)
|
||||
|
||||
tot_loss = 0.0
|
||||
num_tokens = 0
|
||||
num_sentences = 0
|
||||
for batch_idx, batch in enumerate(test_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum().cpu().item()
|
||||
|
||||
tot_loss += loss
|
||||
num_tokens += sentence_lengths.sum().cpu().item()
|
||||
num_sentences += x.size(0)
|
||||
|
||||
ppl = math.exp(tot_loss / num_tokens)
|
||||
logging.info(
|
||||
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
||||
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
218
icefall/rnn_lm/dataset.py
Normal file
218
icefall/rnn_lm/dataset.py
Normal file
@ -0,0 +1,218 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from icefall.utils import AttributeDict, add_eos, add_sos
|
||||
|
||||
|
||||
class LmDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
sentences: k2.RaggedTensor,
|
||||
words: k2.RaggedTensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
max_sent_len: int,
|
||||
batch_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
sentences:
|
||||
A ragged tensor of dtype torch.int32 with 2 axes [sentence][word].
|
||||
words:
|
||||
A ragged tensor of dtype torch.int32 with 2 axes [word][token].
|
||||
sentence_lengths:
|
||||
A 1-D tensor of dtype torch.int32 containing number of tokens
|
||||
of each sentence.
|
||||
max_sent_len:
|
||||
Maximum sentence length. It is used to change the batch size
|
||||
dynamically. In general, we try to keep the product of
|
||||
"max_sent_len in a batch" and "num_of_sent in a batch" being
|
||||
a constant.
|
||||
batch_size:
|
||||
The expected batch size. It is changed dynamically according
|
||||
to the "max_sent_len".
|
||||
|
||||
See `../local/prepare_lm_training_data.py` for how `sentences` and
|
||||
`words` are generated. We assume that `sentences` are sorted by length.
|
||||
See `../local/sort_lm_training_data.py`.
|
||||
"""
|
||||
super().__init__()
|
||||
self.sentences = sentences
|
||||
self.words = words
|
||||
|
||||
sentence_lengths = sentence_lengths.tolist()
|
||||
|
||||
assert batch_size > 0, batch_size
|
||||
assert max_sent_len > 1, max_sent_len
|
||||
batch_indexes = []
|
||||
num_sentences = sentences.dim0
|
||||
cur = 0
|
||||
while cur < num_sentences:
|
||||
sz = sentence_lengths[cur] // max_sent_len + 1
|
||||
# Assume the current sentence has 3 * max_sent_len tokens,
|
||||
# in the worst case, the subsequent sentences also have
|
||||
# this number of tokens, we should reduce the batch size
|
||||
# so that this batch will not contain too many tokens
|
||||
actual_batch_size = batch_size // sz + 1
|
||||
actual_batch_size = min(actual_batch_size, batch_size)
|
||||
end = cur + actual_batch_size
|
||||
end = min(end, num_sentences)
|
||||
this_batch_indexes = torch.arange(cur, end).tolist()
|
||||
batch_indexes.append(this_batch_indexes)
|
||||
cur = end
|
||||
assert batch_indexes[-1][-1] == num_sentences - 1
|
||||
|
||||
self.batch_indexes = k2.RaggedTensor(batch_indexes)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return number of batches in this dataset"""
|
||||
return self.batch_indexes.dim0
|
||||
|
||||
def __getitem__(self, i: int) -> k2.RaggedTensor:
|
||||
"""Get the i'th batch in this dataset
|
||||
Return a ragged tensor with 2 axes [sentence][token].
|
||||
"""
|
||||
assert 0 <= i < len(self), i
|
||||
|
||||
# indexes is a 1-D tensor containing sentence indexes
|
||||
indexes = self.batch_indexes[i]
|
||||
|
||||
# sentence_words is a ragged tensor with 2 axes
|
||||
# [sentence][word]
|
||||
sentence_words = self.sentences[indexes]
|
||||
|
||||
# in case indexes contains only 1 entry, the returned
|
||||
# sentence_words is a 1-D tensor, we have to convert
|
||||
# it to a ragged tensor
|
||||
if isinstance(sentence_words, torch.Tensor):
|
||||
sentence_words = k2.RaggedTensor(sentence_words.unsqueeze(0))
|
||||
|
||||
# sentence_word_tokens is a ragged tensor with 3 axes
|
||||
# [sentence][word][token]
|
||||
sentence_word_tokens = self.words.index(sentence_words)
|
||||
assert sentence_word_tokens.num_axes == 3
|
||||
|
||||
sentence_tokens = sentence_word_tokens.remove_axis(1)
|
||||
return sentence_tokens
|
||||
|
||||
|
||||
class LmDatasetCollate:
|
||||
def __init__(self, sos_id: int, eos_id: int, blank_id: int):
|
||||
"""
|
||||
Args:
|
||||
sos_id:
|
||||
Token ID of the SOS symbol.
|
||||
eos_id:
|
||||
Token ID of the EOS symbol.
|
||||
blank_id:
|
||||
Token ID of the blank symbol.
|
||||
"""
|
||||
self.sos_id = sos_id
|
||||
self.eos_id = eos_id
|
||||
self.blank_id = blank_id
|
||||
|
||||
def __call__(
|
||||
self, batch: List[k2.RaggedTensor]
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Return a tuple containing 3 tensors:
|
||||
|
||||
- x, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||
for a sentence starting with `self.sos_id`. It is padded to
|
||||
the max sentence length with `self.blank_id`.
|
||||
|
||||
- y, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||
for a sentence ending with `self.eos_id` before padding.
|
||||
Then it is padded to the max sentence length with
|
||||
`self.blank_id`.
|
||||
|
||||
- lengths, a 2-D tensor of dtype torch.int32, containing the number of
|
||||
tokens of each sentence before padding.
|
||||
"""
|
||||
# The batching stuff has already been done in LmDataset
|
||||
assert len(batch) == 1
|
||||
sentence_tokens = batch[0]
|
||||
row_splits = sentence_tokens.shape.row_splits(1)
|
||||
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
|
||||
sentence_tokens_with_sos = add_sos(sentence_tokens, self.sos_id)
|
||||
sentence_tokens_with_eos = add_eos(sentence_tokens, self.eos_id)
|
||||
|
||||
x = sentence_tokens_with_sos.pad(
|
||||
mode="constant", padding_value=self.blank_id
|
||||
)
|
||||
y = sentence_tokens_with_eos.pad(
|
||||
mode="constant", padding_value=self.blank_id
|
||||
)
|
||||
sentence_token_lengths += 1 # plus 1 since we added a SOS
|
||||
|
||||
return x.to(torch.int64), y.to(torch.int64), sentence_token_lengths
|
||||
|
||||
|
||||
def get_dataloader(
|
||||
filename: str,
|
||||
is_distributed: bool,
|
||||
params: AttributeDict,
|
||||
) -> torch.utils.data.DataLoader:
|
||||
"""Get dataloader for LM training.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Path to the file containing LM data. The file is assumed to
|
||||
be generated by `../local/sort_lm_training_data.py`.
|
||||
is_distributed:
|
||||
True if using DDP training. False otherwise.
|
||||
params:
|
||||
Set `get_params()` from `rnn_lm/train.py`
|
||||
Returns:
|
||||
Return a dataloader containing the LM data.
|
||||
"""
|
||||
lm_data = torch.load(filename)
|
||||
|
||||
words = lm_data["words"]
|
||||
sentences = lm_data["sentences"]
|
||||
sentence_lengths = lm_data["sentence_lengths"]
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=params.max_sent_len,
|
||||
batch_size=params.batch_size,
|
||||
)
|
||||
if is_distributed:
|
||||
sampler = DistributedSampler(dataset, shuffle=True, drop_last=False)
|
||||
else:
|
||||
sampler = None
|
||||
|
||||
collate_fn = LmDatasetCollate(
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
blank_id=params.blank_id,
|
||||
)
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=1,
|
||||
collate_fn=collate_fn,
|
||||
sampler=sampler,
|
||||
shuffle=sampler is None,
|
||||
)
|
||||
return dataloader
|
167
icefall/rnn_lm/export.py
Normal file
167
icefall/rnn_lm/export.py
Normal file
@ -0,0 +1,167 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from model import RnnLmModel
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.utils import AttributeDict, load_averaged_model, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=29,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = AttributeDict({})
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
model = load_averaged_model(
|
||||
params.exp_dir, model, params.epoch, params.avg, device
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
120
icefall/rnn_lm/model.py
Normal file
120
icefall/rnn_lm/model.py
Normal file
@ -0,0 +1,120 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from icefall.utils import make_pad_mask
|
||||
|
||||
|
||||
class RnnLmModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
hidden_dim: int,
|
||||
num_layers: int,
|
||||
tie_weights: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Vocabulary size of BPE model.
|
||||
embedding_dim:
|
||||
Input embedding dimension.
|
||||
hidden_dim:
|
||||
Hidden dimension of RNN layers.
|
||||
num_layers:
|
||||
Number of RNN layers.
|
||||
tie_weights:
|
||||
True to share the weights between the input embedding layer and the
|
||||
last output linear layer. See https://arxiv.org/abs/1608.05859
|
||||
and https://arxiv.org/abs/1611.01462
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.input_embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
)
|
||||
|
||||
self.rnn = torch.nn.LSTM(
|
||||
input_size=embedding_dim,
|
||||
hidden_size=hidden_dim,
|
||||
num_layers=num_layers,
|
||||
batch_first=True,
|
||||
)
|
||||
|
||||
self.output_linear = torch.nn.Linear(
|
||||
in_features=hidden_dim, out_features=vocab_size
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
if tie_weights:
|
||||
logging.info("Tying weights")
|
||||
assert embedding_dim == hidden_dim, (embedding_dim, hidden_dim)
|
||||
self.output_linear.weight = self.input_embedding.weight
|
||||
else:
|
||||
logging.info("Not tying weights")
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, y: torch.Tensor, lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 2-D tensor with shape (N, L). Each row
|
||||
contains token IDs for a sentence and starts with the SOS token.
|
||||
y:
|
||||
A shifted version of `x` and with EOS appended.
|
||||
lengths:
|
||||
A 1-D tensor of shape (N,). It contains the sentence lengths
|
||||
before padding.
|
||||
Returns:
|
||||
Return a 2-D tensor of shape (N, L) containing negative log-likelihood
|
||||
loss values. Note: Loss values for padding positions are set to 0.
|
||||
"""
|
||||
assert x.ndim == y.ndim == 2, (x.ndim, y.ndim)
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
assert x.shape == y.shape, (x.shape, y.shape)
|
||||
|
||||
batch_size = x.size(0)
|
||||
assert lengths.size(0) == batch_size, (lengths.size(0), batch_size)
|
||||
|
||||
# embedding is of shape (N, L, embedding_dim)
|
||||
embedding = self.input_embedding(x)
|
||||
|
||||
# Note: We use batch_first==True
|
||||
rnn_out, _ = self.rnn(embedding)
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
# Note: No need to use `log_softmax()` here
|
||||
# since F.cross_entropy() expects unnormalized probabilities
|
||||
|
||||
# nll_loss is of shape (N*L,)
|
||||
# nll -> negative log-likelihood
|
||||
nll_loss = F.cross_entropy(
|
||||
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||
)
|
||||
# Set loss values for padding positions to 0
|
||||
mask = make_pad_mask(lengths).reshape(-1)
|
||||
nll_loss.masked_fill_(mask, 0)
|
||||
|
||||
nll_loss = nll_loss.reshape(batch_size, -1)
|
||||
|
||||
return nll_loss
|
71
icefall/rnn_lm/test_dataset.py
Executable file
71
icefall/rnn_lm/test_dataset.py
Executable file
@ -0,0 +1,71 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from rnn_lm.dataset import LmDataset, LmDatasetCollate
|
||||
|
||||
|
||||
def main():
|
||||
sentences = k2.RaggedTensor(
|
||||
[[0, 1, 2], [1, 0, 1], [0, 1], [1, 3, 0, 2, 0], [3], [0, 2, 1]]
|
||||
)
|
||||
words = k2.RaggedTensor([[3, 6], [2, 8, 9, 3], [5], [5, 6, 7, 8, 9]])
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
sentence_lengths = torch.tensor(sentence_lengths, dtype=torch.int32)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
sentences = sentences[indices.to(torch.int32)]
|
||||
sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=3,
|
||||
batch_size=4,
|
||||
)
|
||||
|
||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset, batch_size=1, collate_fn=collate_fn
|
||||
)
|
||||
|
||||
for i in dataloader:
|
||||
print(i)
|
||||
# I've checked the output manually; the output is as expected.
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
103
icefall/rnn_lm/test_dataset_ddp.py
Executable file
103
icefall/rnn_lm/test_dataset_ddp.py
Executable file
@ -0,0 +1,103 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from rnn_lm.dataset import LmDataset, LmDatasetCollate
|
||||
from torch import distributed as dist
|
||||
|
||||
|
||||
def generate_data():
|
||||
sentences = k2.RaggedTensor(
|
||||
[[0, 1, 2], [1, 0, 1], [0, 1], [1, 3, 0, 2, 0], [3], [0, 2, 1]]
|
||||
)
|
||||
words = k2.RaggedTensor([[3, 6], [2, 8, 9, 3], [5], [5, 6, 7, 8, 9]])
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
sentence_lengths = torch.tensor(sentence_lengths, dtype=torch.int32)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
sentences = sentences[indices.to(torch.int32)]
|
||||
sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
return sentences, words, sentence_lengths
|
||||
|
||||
|
||||
def run(rank, world_size):
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = "12352"
|
||||
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
sentences, words, sentence_lengths = generate_data()
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=3,
|
||||
batch_size=4,
|
||||
)
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(
|
||||
dataset, shuffle=True, drop_last=False
|
||||
)
|
||||
|
||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=1,
|
||||
collate_fn=collate_fn,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
for i in dataloader:
|
||||
print(f"rank: {rank}", i)
|
||||
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
def main():
|
||||
world_size = 2
|
||||
mp.spawn(run, args=(world_size,), nprocs=world_size, join=True)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
69
icefall/rnn_lm/test_model.py
Executable file
69
icefall/rnn_lm/test_model.py
Executable file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from rnn_lm.model import RnnLmModel
|
||||
|
||||
|
||||
def test_rnn_lm_model():
|
||||
vocab_size = 4
|
||||
model = RnnLmModel(
|
||||
vocab_size=vocab_size, embedding_dim=10, hidden_dim=10, num_layers=2
|
||||
)
|
||||
x = torch.tensor(
|
||||
[
|
||||
[1, 3, 2, 2],
|
||||
[1, 2, 2, 0],
|
||||
[1, 2, 0, 0],
|
||||
]
|
||||
)
|
||||
y = torch.tensor(
|
||||
[
|
||||
[3, 2, 2, 1],
|
||||
[2, 2, 1, 0],
|
||||
[2, 1, 0, 0],
|
||||
]
|
||||
)
|
||||
lengths = torch.tensor([4, 3, 2])
|
||||
nll_loss = model(x, y, lengths)
|
||||
print(nll_loss)
|
||||
"""
|
||||
tensor([[1.1180, 1.3059, 1.2426, 1.7773],
|
||||
[1.4231, 1.2783, 1.7321, 0.0000],
|
||||
[1.4231, 1.6752, 0.0000, 0.0000]], grad_fn=<ViewBackward>)
|
||||
"""
|
||||
|
||||
|
||||
def test_rnn_lm_model_tie_weights():
|
||||
model = RnnLmModel(
|
||||
vocab_size=10,
|
||||
embedding_dim=10,
|
||||
hidden_dim=10,
|
||||
num_layers=2,
|
||||
tie_weights=True,
|
||||
)
|
||||
assert model.input_embedding.weight is model.output_linear.weight
|
||||
|
||||
|
||||
def main():
|
||||
test_rnn_lm_model()
|
||||
test_rnn_lm_model_tie_weights()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20211122)
|
||||
main()
|
617
icefall/rnn_lm/train.py
Executable file
617
icefall/rnn_lm/train.py
Executable file
@ -0,0 +1,617 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--world-size 2 \
|
||||
--num-epochs 1 \
|
||||
--use-fp16 0 \
|
||||
--embedding-dim 800 \
|
||||
--hidden-dim 200 \
|
||||
--num-layers 2\
|
||||
--batch-size 400
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from dataset import get_dataloader
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import RnnLmModel
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
exp_dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, logs, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||
help="LM training data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data-valid",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||
help="LM validation data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters."""
|
||||
|
||||
params = AttributeDict(
|
||||
{
|
||||
"max_sent_len": 200,
|
||||
"sos_id": 1,
|
||||
"eos_id": 1,
|
||||
"blank_id": 0,
|
||||
"lr": 1e-3,
|
||||
"weight_decay": 1e-6,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 200,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 5000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
logging.info(f"Loading checkpoint: {filename}")
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
model: nn.Module,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
is_training: bool,
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""Compute the negative log-likelihood loss given a model and its input.
|
||||
Args:
|
||||
model:
|
||||
The NN model, e.g., RnnLmModel.
|
||||
x:
|
||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||
each row starts with SOS ID.
|
||||
y:
|
||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||
in `x` but ends with an EOS ID (before padding).
|
||||
sentence_lengths:
|
||||
A 1-D tensor containing number of tokens of each sentence
|
||||
before padding.
|
||||
is_training:
|
||||
True for training. False for validation.
|
||||
"""
|
||||
with torch.set_grad_enabled(is_training):
|
||||
device = model.device
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum()
|
||||
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# Note: Due to how MetricsTracker() is designed,
|
||||
# we use "frames" instead of "num_tokens" as a key here
|
||||
loss_info["frames"] = num_tokens
|
||||
loss_info["loss"] = loss.detach().item()
|
||||
return loss, loss_info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=False,
|
||||
)
|
||||
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all sentences is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
x, y, sentence_lengths = batch
|
||||
batch_size = x.size(0)
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
# Note: "frames" here means "num_tokens"
|
||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_ppl", tot_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
|
||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||
f"ppl: {valid_ppl}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
is_distributed = world_size > 1
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if is_distributed:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if is_distributed:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
model.device = device
|
||||
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
if checkpoints:
|
||||
logging.info("Load optimizer state_dict from checkpoint")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||
train_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||
valid_dl = get_dataloader(
|
||||
filename=params.lm_data_valid,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Note: No learning rate scheduler is used here
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
if is_distributed:
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if is_distributed:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -35,6 +35,8 @@ import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import average_checkpoints
|
||||
|
||||
Pathlike = Union[str, Path]
|
||||
|
||||
|
||||
@ -90,7 +92,11 @@ def str2bool(v):
|
||||
|
||||
|
||||
def setup_logger(
|
||||
log_filename: Pathlike, log_level: str = "info", use_console: bool = True
|
||||
log_filename: Pathlike,
|
||||
log_level: str = "info",
|
||||
rank: int = 0,
|
||||
world_size: int = 1,
|
||||
use_console: bool = True,
|
||||
) -> None:
|
||||
"""Setup log level.
|
||||
|
||||
@ -100,12 +106,16 @@ def setup_logger(
|
||||
log_level:
|
||||
The log level to use, e.g., "debug", "info", "warning", "error",
|
||||
"critical"
|
||||
rank:
|
||||
Rank of this node in DDP training.
|
||||
world_size:
|
||||
Number of nodes in DDP training.
|
||||
use_console:
|
||||
True to also print logs to console.
|
||||
"""
|
||||
now = datetime.now()
|
||||
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
||||
if dist.is_available() and dist.is_initialized():
|
||||
world_size = dist.get_world_size()
|
||||
rank = dist.get_rank()
|
||||
if world_size > 1:
|
||||
formatter = f"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] ({rank}/{world_size}) %(message)s" # noqa
|
||||
log_filename = f"{log_filename}-{date_time}-{rank}"
|
||||
else:
|
||||
@ -799,3 +809,34 @@ def optim_step_and_measure_param_change(
|
||||
delta = l2_norm(p_orig - p_new) / l2_norm(p_orig)
|
||||
relative_change[n] = delta.item()
|
||||
return relative_change
|
||||
|
||||
|
||||
def load_averaged_model(
|
||||
model_dir: str,
|
||||
model: torch.nn.Module,
|
||||
epoch: int,
|
||||
avg: int,
|
||||
device: torch.device,
|
||||
):
|
||||
"""
|
||||
Load a model which is the average of all checkpoints
|
||||
|
||||
:param model_dir: a str of the experiment directory
|
||||
:param model: a torch.nn.Module instance
|
||||
|
||||
:param epoch: the last epoch to load from
|
||||
:param avg: how many models to average from
|
||||
:param device: move model to this device
|
||||
|
||||
:return: A model averaged
|
||||
"""
|
||||
|
||||
# start cannot be negative
|
||||
start = max(epoch - avg + 1, 0)
|
||||
filenames = [f"{model_dir}/epoch-{i}.pt" for i in range(start, epoch + 1)]
|
||||
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
return model
|
||||
|
Loading…
x
Reference in New Issue
Block a user