This commit is contained in:
Yifan Yang 2023-07-13 15:42:43 +08:00
parent 8936365c5c
commit 03abdb3712
9 changed files with 113 additions and 41 deletions

View File

@ -29,7 +29,7 @@ vocab_sizes=(
multidataset=(
"gigaspeech",
"commonvoice",
"peoples_speech",
"librilight",
)
# All files generated by this script are saved in "data".
@ -164,18 +164,18 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
cd ../..
fi
# People's Speech
if [[ "${multidataset[@]}" =~ "peoples_speech" ]] && [ ! -f data/fbank/.peoples_speech.done ]; then
log "Dataset: People's Speech"
# LibriLight
if [[ "${multidataset[@]}" =~ "librilight" ]] && [ ! -f data/fbank/.librilight.done ]; then
log "Dataset: LibriLight"
cd data/fbank
if [ -f ../../../../peoples_speech/ASR/data/fbank/.peoples_speech_train.done ]; then
ln -svf $(realpath ../../../../peoples_speech/ASR/data/fbank/peoples_speech_train_split) .
if [ -f ../../../../librilight/ASR/data/fbank/.librilight_train.done ]; then
ln -svf $(realpath ../../../../librilight/ASR/data/fbank/librilight_train_split) .
else
log "Abort! Please run ../../peoples_speech/ASR/prepare.sh --stage 5 --stop-stage 6"
log "Abort! Please run ../../librilight/ASR/prepare.sh --stage 5 --stop-stage 6"
exit 1
fi
touch .peoples_speech.done
touch .librilight.done
cd ../..
fi
fi

View File

@ -88,7 +88,7 @@ import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from train import add_model_arguments, get_params, get_model
from train import add_model_arguments, get_model, get_params
from icefall.checkpoint import (
average_checkpoints,

View File

@ -116,7 +116,8 @@ from beam_search import (
greedy_search_batch,
modified_beam_search,
)
from train import add_model_arguments, get_params, get_model
from multidataset import MultiDataset
from train import add_model_arguments, get_model, get_params
from icefall.checkpoint import (
average_checkpoints,
@ -782,6 +783,7 @@ def main():
# we need cut ids to display recognition results.
args.return_cuts = True
librispeech = LibriSpeechAsrDataModule(args)
multidataset = MultiDataset(args.manifest_dir)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
@ -789,8 +791,30 @@ def main():
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
test_cuts = multidataset.test_cuts()
gigaspeech_dev_dl = librispeech.test_dataloaders(test_cuts[0])
gigaspeech_test_dl = librispeech.test_dataloaders(test_cuts[1])
commonvoice_dev_dl = librispeech.test_dataloaders(test_cuts[2])
commonvoice_test_dl = librispeech.test_dataloaders(test_cuts[3])
test_sets = [
"librispeech-test-clean",
"librispeech-test-other",
"gigaspeech-dev",
"gigaspeech-test",
"commonvoice-dev",
"commonvoice-test",
]
test_dl = [
test_clean_dl,
test_other_dl,
gigaspeech_dev_dl,
gigaspeech_test_dl,
commonvoice_dev_dl,
commonvoice_test_dl,
]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(

View File

@ -76,7 +76,7 @@ import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_model
from train import add_model_arguments, get_model, get_params
from zipformer import Zipformer2
from icefall.checkpoint import (
@ -85,7 +85,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool, make_pad_mask
from icefall.utils import make_pad_mask, str2bool
def get_parser():
@ -182,7 +182,10 @@ class OnnxEncoder(nn.Module):
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
def __init__(
self, encoder: Zipformer2, encoder_embed: nn.Module, encoder_proj: nn.Linear
self,
encoder: Zipformer2,
encoder_embed: nn.Module,
encoder_proj: nn.Linear,
):
"""
Args:
@ -210,7 +213,11 @@ class OnnxEncoder(nn.Module):
left_context_len = self.left_context_len
cached_embed_left_pad = states[-2]
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
(
x,
x_lens,
new_cached_embed_left_pad,
) = self.encoder_embed.streaming_forward(
x=x,
x_lens=x_lens,
cached_left_pad=cached_embed_left_pad,

View File

@ -74,7 +74,7 @@ import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_model
from train import add_model_arguments, get_model, get_params
from zipformer import Zipformer2
from icefall.checkpoint import (
@ -83,7 +83,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool, make_pad_mask
from icefall.utils import make_pad_mask, str2bool
def get_parser():
@ -180,7 +180,10 @@ class OnnxEncoder(nn.Module):
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
def __init__(
self, encoder: Zipformer2, encoder_embed: nn.Module, encoder_proj: nn.Linear
self,
encoder: Zipformer2,
encoder_embed: nn.Module,
encoder_proj: nn.Linear,
):
"""
Args:

View File

@ -160,8 +160,9 @@ from typing import List, Tuple
import sentencepiece as spm
import torch
from scaling_converter import convert_scaled_to_non_scaled
from torch import Tensor, nn
from train import add_model_arguments, get_params, get_model
from train import add_model_arguments, get_model, get_params
from icefall.checkpoint import (
average_checkpoints,
@ -170,7 +171,6 @@ from icefall.checkpoint import (
load_checkpoint,
)
from icefall.utils import make_pad_mask, str2bool
from scaling_converter import convert_scaled_to_non_scaled
def get_parser():
@ -315,7 +315,11 @@ class StreamingEncoderModel(nn.Module):
left_context_len = self.left_context_len
cached_embed_left_pad = states[-2]
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
(
x,
x_lens,
new_cached_embed_left_pad,
) = self.encoder_embed.streaming_forward(
x=features,
x_lens=feature_lengths,
cached_left_pad=cached_embed_left_pad,

View File

@ -71,30 +71,57 @@ class MultiDataset:
self.manifest_dir / f"cv-en_cuts_train.jsonl.gz"
)
# People's Speech
sorted_filenames = sorted(
glob.glob(
f"{self.manifest_dir}/peoples_speech_train_split/peoples_speech_cuts_*[yna].*.jsonl.gz"
)
# LibriHeavy
logging.info("Loading LibriHeavy in lazy mode")
libriheavy_small_cuts = load_manifest_lazy(
self.manifest_dir / "libriheavy_cuts_train_small.jsonl.gz"
)
logging.info(
f"Loading People's Speech {len(sorted_filenames)} splits in lazy mode"
)
peoples_speech_cuts = lhotse.combine(
lhotse.load_manifest_lazy(p) for p in sorted_filenames
libriheavy_medium_cuts = load_manifest_lazy(
self.manifest_dir / "libriheavy_cuts_train_medium.jsonl.gz"
)
libriheavy_cuts = lhotse.combine(libriheavy_small_cuts, libriheavy_medium_cuts)
return CutSet.mux(
librispeech_cuts,
gigaspeech_cuts,
commonvoice_cuts,
peoples_speech_cuts,
libriheavy_cuts,
weights=[
len(librispeech_cuts),
len(gigaspeech_cuts),
len(commonvoice_cuts),
len(peoples_speech_cuts),
len(libriheavy_cuts),
],
)
def test_cuts(self) -> CutSet:
logging.info("About to get multidataset test cuts")
# GigaSpeech
logging.info("Loading GigaSpeech DEV in lazy mode")
gigaspeech_dev_cuts = load_manifest_lazy(
self.manifest_dir / "cuts_DEV.jsonl.gz"
)
logging.info("Loading GigaSpeech TEST in lazy mode")
gigaspeech_test_cuts = load_manifest_lazy(
self.manifest_dir / "cuts_TEST.jsonl.gz"
)
# CommonVoice
logging.info("Loading CommonVoice DEV in lazy mode")
commonvoice_dev_cuts = load_manifest_lazy(
self.manifest_dir / "cv-en_cuts_dev.jsonl.gz"
)
logging.info("Loading CommonVoice TEST in lazy mode")
commonvoice_test_cuts = load_manifest_lazy(
self.manifest_dir / "cv-en_cuts_test.jsonl.gz"
)
return [
gigaspeech_dev_cuts,
gigaspeech_test_cuts,
commonvoice_dev_cuts,
commonvoice_test_cuts,
]

View File

@ -51,7 +51,7 @@ from streaming_beam_search import (
)
from torch import Tensor, nn
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_model
from train import add_model_arguments, get_model, get_params
from icefall.checkpoint import (
average_checkpoints,
@ -374,7 +374,11 @@ def streaming_forward(
Returns encoder outputs, output lengths, and updated states.
"""
cached_embed_left_pad = states[-2]
(x, x_lens, new_cached_embed_left_pad) = model.encoder_embed.streaming_forward(
(
x,
x_lens,
new_cached_embed_left_pad,
) = model.encoder_embed.streaming_forward(
x=features,
x_lens=feature_lens,
cached_left_pad=cached_embed_left_pad,

View File

@ -66,13 +66,13 @@ import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from multidataset import MultiDataset
from decoder import Decoder
from joiner import Joiner
from lhotse.cut import Cut
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from model import AsrModel
from multidataset import MultiDataset
from optim import Eden, ScaledAdam
from scaling import ScheduledFloat
from subsampling import Conv2dSubsampling
@ -344,7 +344,7 @@ def get_parser():
parser.add_argument(
"--lr-hours",
type=float,
default=5000,
default=70000,
help="""Number of hours that affects how rapidly the learning rate decreases.
""",
)
@ -1052,7 +1052,9 @@ def train_one_epoch(
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
if params.use_fp16:
tb_writer.add_scalar(
"train/grad_scale", cur_grad_scale, params.batch_idx_train
"train/grad_scale",
cur_grad_scale,
params.batch_idx_train,
)
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
@ -1387,5 +1389,6 @@ def main():
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()