Add peoples_speech (#1101)

* update

* Small fix

* Update egs/peoples_speech/ASR/prepare.sh

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* limit normalize log

* Update egs/peoples_speech/ASR/local/compute_fbank_peoples_speech_valid_test.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update compute_fbank_peoples_speech_splits.py

* Update compute_fbank_peoples_speech_valid_test.py

---------

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
This commit is contained in:
Yifan Yang 2023-05-31 12:46:17 +08:00 committed by GitHub
parent 7b0afbdc16
commit 03853f1ee5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 623 additions and 0 deletions

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compute_fbank_musan.py

View File

@ -0,0 +1,154 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from datetime import datetime
from pathlib import Path
import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomChunkyWriter,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)
parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the train subset",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
return parser.parse_args()
def compute_fbank_peoples_speech_splits(args):
subsets = ("dirty", "dirty_sa", "clean", "clean_sa")
num_splits = args.num_splits
output_dir = f"data/fbank/peoples_speech_train_split"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"
num_digits = 8
start = args.start
stop = args.stop
if stop < start:
stop = num_splits
stop = min(stop, num_splits)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)
for partition in subsets:
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing {partition}: {idx}")
cuts_path = output_dir / f"peoples_speech_cuts_{partition}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = (
output_dir / f"peoples_speech_cuts_{partition}_raw.{idx}.jsonl.gz"
)
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Splitting cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/peoples_speech_feats_{partition}_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_peoples_speech_splits(args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,93 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the People's Speech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
import torch
from filter_cuts import filter_cuts
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_peoples_speech_valid_test():
src_dir = Path(f"data/manifests")
output_dir = Path(f"data/fbank")
num_workers = 42
batch_duration = 600
subsets = ("validation", "test")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
for partition in subsets:
cuts_path = output_dir / f"peoples_speech_cuts_{partition}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{partition} already exists - skipping.")
continue
raw_cuts_path = output_dir / f"peoples_speech_cuts_{partition}_raw.jsonl.gz"
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Splitting cuts into smaller chunks")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/peoples_speech_feats_{partition}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_peoples_speech_valid_test()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/filter_cuts.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang_bpe.py

View File

@ -0,0 +1,123 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import re
from pathlib import Path
from typing import Optional
from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
return parser.parse_args()
def normalize_text(utt: str) -> str:
utt = re.sub(r"[{0}]+".format("-"), " ", utt)
return re.sub(r"[^a-zA-Z\s]", "", utt).upper()
def preprocess_peoples_speech(dataset: Optional[str] = None):
src_dir = Path(f"data/manifests")
output_dir = Path(f"data/fbank")
output_dir.mkdir(exist_ok=True)
if dataset is None:
dataset_parts = (
"validation",
"test",
"dirty",
"dirty_sa",
"clean",
"clean_sa",
)
else:
dataset_parts = dataset.split(" ", -1)
logging.info("Loading manifest, it may takes 8 minutes")
prefix = f"peoples_speech"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
suffix=suffix,
prefix=prefix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"{prefix}_cuts_{partition}_raw.{suffix}"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
logging.info(f"Normalizing text in {partition}")
i = 0
for sup in m["supervisions"]:
text = str(sup.text)
orig_text = text
sup.text = normalize_text(sup.text)
text = str(sup.text)
if i < 10 and len(orig_text) != len(text):
logging.info(
f"\nOriginal text vs normalized text:\n{orig_text}\n{text}"
)
i += 1
# Create long-recording cut manifests.
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
).resample(16000)
# Run data augmentation that needs to be done in the
# time domain.
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
preprocess_peoples_speech(dataset=args.dataset)
logging.info("Done")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/train_bpe_model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/validate_bpe_lexicon.py

247
egs/peoples_speech/ASR/prepare.sh Executable file
View File

@ -0,0 +1,247 @@
#!/usr/bin/env bash
set -eou pipefail
nj=32
stage=-1
stop_stage=100
# Split data/set to a number of pieces
# This is to avoid OOM during feature extraction.
num_per_split=4000
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/peoples_speech
# This directory contains the following files downloaded from
# https://huggingface.co/datasets/MLCommons/peoples_speech
#
# - test
# - train
# - validation
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/peoples_speech,
# you can create a symlink
#
# ln -sfv /path/to/peoples_speech $dl_dir/peoples_speech
#
if [ ! -d $dl_dir/peoples_speech/train ]; then
git lfs install
git clone https://huggingface.co/datasets/MLCommons/peoples_speech
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare People's Speech manifest"
# We assume that you have downloaded the People's Speech corpus
# to $dl_dir/peoples_speech
mkdir -p data/manifests
if [ ! -e data/manifests/.peoples_speech.done ]; then
lhotse prepare peoples-speech -j $nj $dl_dir/peoples_speech data/manifests
touch data/manifests/.peoples_speech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess People's Speech manifest"
mkdir -p data/fbank
if [ ! -e data/fbank/.preprocess_complete ]; then
./local/preprocess_peoples_speech.py
touch data/fbank/.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for valid and test subsets of People's Speech"
if [ ! -e data/fbank/.peoples_speech_valid_test.done ]; then
./local/compute_fbank_peoples_speech_valid_test.py
touch data/fbank/.peoples_speech_valid_test.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split train subset into pieces"
split_dir=data/fbank/peoples_speech_train_split
if [ ! -e $split_dir/.peoples_speech_dirty_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_dirty_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_dirty_split.done
fi
if [ ! -e $split_dir/.peoples_speech_dirty_sa_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_dirty_sa_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_dirty_sa_split.done
fi
if [ ! -e $split_dir/.peoples_speech_clean_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_clean_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_clean_split.done
fi
if [ ! -e $split_dir/.peoples_speech_clean_sa_split.done ]; then
lhotse split-lazy ./data/fbank/peoples_speech_cuts_clean_sa_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.peoples_speech_clean_sa_split.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute features for train subset of People's Speech"
if [ ! -e data/fbank/.peoples_speech_train.done ]; then
./local/compute_fbank_peoples_speech_splits.py \
--num-workers $nj \
--batch-duration 600 \
--start 0 \
--num-splits 2000
touch data/fbank/.peoples_speech_train.done
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
file=$(
find "data/fbank/peoples_speech_cuts_dirty_raw.jsonl.gz"
find "data/fbank/peoples_speech_cuts_dirty_sa_raw.jsonl.gz"
find "data/fbank/peoples_speech_cuts_clean_raw.jsonl.gz"
find "data/fbank/peoples_speech_cuts_clean_sa_raw.jsonl.gz"
)
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/ +/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
cat - $lang_dir/words.txt | sort | uniq | awk '
BEGIN {
print "<eps> 0";
}
{
if ($1 == "<s>") {
print "<s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
if ($1 == "</s>") {
print "</s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
printf("%s %d\n", $1, NR);
}
END {
printf("#0 %d\n", NR+1);
printf("<s> %d\n", NR+2);
printf("</s> %d\n", NR+3);
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi

View File

@ -0,0 +1 @@
../../../icefall/shared/