diff --git a/docs/README.md b/docs/README.md
new file mode 100644
index 000000000..3abb38f8b
--- /dev/null
+++ b/docs/README.md
@@ -0,0 +1,24 @@
+
+## Usage
+
+```bash
+cd /path/to/icefall/docs
+pip install -r requirements.txt
+make clean
+make html
+cd build/html
+python3 -m http.server 8000
+```
+
+It prints:
+
+```
+Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
+```
+
+Open your browser and go to to view the generated
+documentation.
+
+Done!
+
+**Hint**: You can change the port number when starting the server.
diff --git a/docs/source/conf.py b/docs/source/conf.py
index 221d9d734..ef9fe1445 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -78,3 +78,12 @@ html_context = {
}
todo_include_todos = True
+
+rst_epilog = """
+.. _sherpa-ncnn: https://github.com/k2-fsa/sherpa-ncnn
+.. _icefall: https://github.com/k2-fsa/icefall
+.. _git-lfs: https://git-lfs.com/
+.. _ncnn: https://github.com/tencent/ncnn
+.. _LibriSpeech: https://www.openslr.org/12
+.. _musan: http://www.openslr.org/17/
+"""
diff --git a/docs/source/faqs.rst b/docs/source/faqs.rst
new file mode 100644
index 000000000..72b0302d7
--- /dev/null
+++ b/docs/source/faqs.rst
@@ -0,0 +1,107 @@
+Frequently Asked Questions (FAQs)
+=================================
+
+In this section, we collect issues reported by users and post the corresponding
+solutions.
+
+
+OSError: libtorch_hip.so: cannot open shared object file: no such file or directory
+-----------------------------------------------------------------------------------
+
+One user is using the following code to install ``torch`` and ``torchaudio``:
+
+.. code-block:: bash
+
+ pip install \
+ torch==1.10.0+cu111 \
+ torchvision==0.11.0+cu111 \
+ torchaudio==0.10.0 \
+ -f https://download.pytorch.org/whl/torch_stable.html
+
+and it throws the following error when running ``tdnn/train.py``:
+
+.. code-block::
+
+ OSError: libtorch_hip.so: cannot open shared object file: no such file or directory
+
+The fix is to specify the CUDA version while installing ``torchaudio``. That
+is, change ``torchaudio==0.10.0`` to ``torchaudio==0.10.0+cu11```. Therefore,
+the correct command is:
+
+.. code-block:: bash
+
+ pip install \
+ torch==1.10.0+cu111 \
+ torchvision==0.11.0+cu111 \
+ torchaudio==0.10.0+cu111 \
+ -f https://download.pytorch.org/whl/torch_stable.html
+
+AttributeError: module 'distutils' has no attribute 'version'
+-------------------------------------------------------------
+
+The error log is:
+
+.. code-block::
+
+ Traceback (most recent call last):
+ File "./tdnn/train.py", line 14, in
+ from asr_datamodule import YesNoAsrDataModule
+ File "/home/xxx/code/next-gen-kaldi/icefall/egs/yesno/ASR/tdnn/asr_datamodule.py", line 34, in
+ from icefall.dataset.datamodule import DataModule
+ File "/home/xxx/code/next-gen-kaldi/icefall/icefall/__init__.py", line 3, in
+ from . import (
+ File "/home/xxx/code/next-gen-kaldi/icefall/icefall/decode.py", line 23, in
+ from icefall.utils import add_eos, add_sos, get_texts
+ File "/home/xxx/code/next-gen-kaldi/icefall/icefall/utils.py", line 39, in
+ from torch.utils.tensorboard import SummaryWriter
+ File "/home/xxx/tool/miniconda3/envs/yyy/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 4, in
+ LooseVersion = distutils.version.LooseVersion
+ AttributeError: module 'distutils' has no attribute 'version'
+
+The fix is:
+
+.. code-block:: bash
+
+ pip uninstall setuptools
+
+ pip install setuptools==58.0.4
+
+ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory
+--------------------------------------------------------------------------------------------
+
+If you are using ``conda`` and encounter the following issue:
+
+.. code-block::
+
+ Traceback (most recent call last):
+ File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 24, in
+ from _k2 import DeterminizeWeightPushingType
+ ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory
+
+ During handling of the above exception, another exception occurred:
+
+ Traceback (most recent call last):
+ File "/k2-dev/yangyifan/icefall/egs/librispeech/ASR/./pruned_transducer_stateless7_ctc_bs/decode.py", line 104, in
+ import k2
+ File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 30, in
+ raise ImportError(
+ ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or directory
+ Note: If you're using anaconda and importing k2 on MacOS,
+ you can probably fix this by setting the environment variable:
+ export DYLD_LIBRARY_PATH=$CONDA_PREFIX/lib/python3.10/site-packages:$DYLD_LIBRARY_PATH
+
+Please first try to find where ``libpython3.10.so.1.0`` locates.
+
+For instance,
+
+.. code-block:: bash
+
+ cd $CONDA_PREFIX/lib
+ find . -name "libpython*"
+
+If you are able to find it inside ``$CODNA_PREFIX/lib``, please set the
+following environment variable:
+
+.. code-block:: bash
+
+ export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
diff --git a/docs/source/index.rst b/docs/source/index.rst
index 4ea446259..8d76eb68b 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -21,6 +21,7 @@ speech recognition recipes using `k2 `_.
:caption: Contents:
installation/index
+ faqs
model-export/index
.. toctree::
diff --git a/docs/source/model-export/code/export-conv-emformer-transducer-for-ncnn-output.txt b/docs/source/model-export/code/export-conv-emformer-transducer-for-ncnn-output.txt
new file mode 100644
index 000000000..ecbdd4b31
--- /dev/null
+++ b/docs/source/model-export/code/export-conv-emformer-transducer-for-ncnn-output.txt
@@ -0,0 +1,21 @@
+2023-01-11 12:15:38,677 INFO [export-for-ncnn.py:220] device: cpu
+2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:229] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_v
+alid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampl
+ing_factor': 4, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.23.2', 'k2-build-type':
+'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a34171ed85605b0926eebbd0463d059431f4f74a', 'k2-git-date': 'Wed Dec 14 00:06:38 2022',
+ 'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': False, 'torch-cuda-vers
+ion': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'fix-stateless3-train-2022-12-27', 'icefall-git-sha1': '530e8a1-dirty', '
+icefall-git-date': 'Tue Dec 27 13:59:18 2022', 'icefall-path': '/star-fj/fangjun/open-source/icefall', 'k2-path': '/star-fj/fangjun/op
+en-source/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/open-source/lhotse/lhotse/__init__.py', 'hostname': 'de-74279
+-k2-train-3-1220120619-7695ff496b-s9n4w', 'IP address': '127.0.0.1'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'exp_dir': PosixPath('icefa
+ll-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp'), 'bpe_model': './icefall-asr-librispeech-conv-emformer-transdu
+cer-stateless2-2022-07-05//data/lang_bpe_500/bpe.model', 'jit': False, 'context_size': 2, 'use_averaged_model': False, 'encoder_dim':
+512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'cnn_module_kernel': 31, 'left_context_length': 32, 'chunk_length'
+: 32, 'right_context_length': 8, 'memory_size': 32, 'blank_id': 0, 'vocab_size': 500}
+2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:231] About to create model
+2023-01-11 12:15:40,053 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-librispeech-conv-emformer-transducer-stateless2-2
+022-07-05/exp/epoch-30.pt
+2023-01-11 12:15:40,708 INFO [export-for-ncnn.py:315] Number of model parameters: 75490012
+2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:318] Using torch.jit.trace()
+2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:320] Exporting encoder
+2023-01-11 12:15:41,682 INFO [export-for-ncnn.py:149] chunk_length: 32, right_context_length: 8
diff --git a/docs/source/model-export/code/generate-int-8-scale-table-for-conv-emformer.txt b/docs/source/model-export/code/generate-int-8-scale-table-for-conv-emformer.txt
new file mode 100644
index 000000000..347e7e51a
--- /dev/null
+++ b/docs/source/model-export/code/generate-int-8-scale-table-for-conv-emformer.txt
@@ -0,0 +1,104 @@
+Don't Use GPU. has_gpu: 0, config.use_vulkan_compute: 1
+num encoder conv layers: 88
+num joiner conv layers: 3
+num files: 3
+Processing ../test_wavs/1089-134686-0001.wav
+Processing ../test_wavs/1221-135766-0001.wav
+Processing ../test_wavs/1221-135766-0002.wav
+Processing ../test_wavs/1089-134686-0001.wav
+Processing ../test_wavs/1221-135766-0001.wav
+Processing ../test_wavs/1221-135766-0002.wav
+----------encoder----------
+conv_87 : max = 15.942385 threshold = 15.938493 scale = 7.968131
+conv_88 : max = 35.442448 threshold = 15.549335 scale = 8.167552
+conv_89 : max = 23.228289 threshold = 8.001738 scale = 15.871552
+linear_90 : max = 3.976146 threshold = 1.101789 scale = 115.267128
+linear_91 : max = 6.962030 threshold = 5.162033 scale = 24.602713
+linear_92 : max = 12.323041 threshold = 3.853959 scale = 32.953129
+linear_94 : max = 6.905416 threshold = 4.648006 scale = 27.323545
+linear_93 : max = 6.905416 threshold = 5.474093 scale = 23.200188
+linear_95 : max = 1.888012 threshold = 1.403563 scale = 90.483986
+linear_96 : max = 6.856741 threshold = 5.398679 scale = 23.524273
+linear_97 : max = 9.635942 threshold = 2.613655 scale = 48.590950
+linear_98 : max = 6.460340 threshold = 5.670146 scale = 22.398010
+linear_99 : max = 9.532276 threshold = 2.585537 scale = 49.119396
+linear_101 : max = 6.585871 threshold = 5.719224 scale = 22.205809
+linear_100 : max = 6.585871 threshold = 5.751382 scale = 22.081648
+linear_102 : max = 1.593344 threshold = 1.450581 scale = 87.551147
+linear_103 : max = 6.592681 threshold = 5.705824 scale = 22.257959
+linear_104 : max = 8.752957 threshold = 1.980955 scale = 64.110489
+linear_105 : max = 6.696240 threshold = 5.877193 scale = 21.608953
+linear_106 : max = 9.059659 threshold = 2.643138 scale = 48.048950
+linear_108 : max = 6.975461 threshold = 4.589567 scale = 27.671457
+linear_107 : max = 6.975461 threshold = 6.190381 scale = 20.515701
+linear_109 : max = 3.710759 threshold = 2.305635 scale = 55.082436
+linear_110 : max = 7.531228 threshold = 5.731162 scale = 22.159557
+linear_111 : max = 10.528083 threshold = 2.259322 scale = 56.211544
+linear_112 : max = 8.148807 threshold = 5.500842 scale = 23.087374
+linear_113 : max = 8.592566 threshold = 1.948851 scale = 65.166611
+linear_115 : max = 8.437109 threshold = 5.608947 scale = 22.642395
+linear_114 : max = 8.437109 threshold = 6.193942 scale = 20.503904
+linear_116 : max = 3.966980 threshold = 3.200896 scale = 39.676392
+linear_117 : max = 9.451303 threshold = 6.061664 scale = 20.951344
+linear_118 : max = 12.077262 threshold = 3.965800 scale = 32.023804
+linear_119 : max = 9.671615 threshold = 4.847613 scale = 26.198460
+linear_120 : max = 8.625638 threshold = 3.131427 scale = 40.556595
+linear_122 : max = 10.274080 threshold = 4.888716 scale = 25.978189
+linear_121 : max = 10.274080 threshold = 5.420480 scale = 23.429659
+linear_123 : max = 4.826197 threshold = 3.599617 scale = 35.281532
+linear_124 : max = 11.396383 threshold = 7.325849 scale = 17.335875
+linear_125 : max = 9.337198 threshold = 3.941410 scale = 32.221970
+linear_126 : max = 9.699965 threshold = 4.842878 scale = 26.224073
+linear_127 : max = 8.775370 threshold = 3.884215 scale = 32.696438
+linear_129 : max = 9.872276 threshold = 4.837319 scale = 26.254213
+linear_128 : max = 9.872276 threshold = 7.180057 scale = 17.687883
+linear_130 : max = 4.150427 threshold = 3.454298 scale = 36.765789
+linear_131 : max = 11.112692 threshold = 7.924847 scale = 16.025545
+linear_132 : max = 11.852893 threshold = 3.116593 scale = 40.749626
+linear_133 : max = 11.517084 threshold = 5.024665 scale = 25.275314
+linear_134 : max = 10.683807 threshold = 3.878618 scale = 32.743618
+linear_136 : max = 12.421055 threshold = 6.322729 scale = 20.086264
+linear_135 : max = 12.421055 threshold = 5.309880 scale = 23.917679
+linear_137 : max = 4.827781 threshold = 3.744595 scale = 33.915554
+linear_138 : max = 14.422395 threshold = 7.742882 scale = 16.402161
+linear_139 : max = 8.527538 threshold = 3.866123 scale = 32.849449
+linear_140 : max = 12.128619 threshold = 4.657793 scale = 27.266134
+linear_141 : max = 9.839593 threshold = 3.845993 scale = 33.021378
+linear_143 : max = 12.442304 threshold = 7.099039 scale = 17.889746
+linear_142 : max = 12.442304 threshold = 5.325038 scale = 23.849592
+linear_144 : max = 5.929444 threshold = 5.618206 scale = 22.605080
+linear_145 : max = 13.382126 threshold = 9.321095 scale = 13.625010
+linear_146 : max = 9.894987 threshold = 3.867645 scale = 32.836517
+linear_147 : max = 10.915313 threshold = 4.906028 scale = 25.886522
+linear_148 : max = 9.614287 threshold = 3.908151 scale = 32.496181
+linear_150 : max = 11.724932 threshold = 4.485588 scale = 28.312899
+linear_149 : max = 11.724932 threshold = 5.161146 scale = 24.606939
+linear_151 : max = 7.164453 threshold = 5.847355 scale = 21.719223
+linear_152 : max = 13.086471 threshold = 5.984121 scale = 21.222834
+linear_153 : max = 11.099524 threshold = 3.991601 scale = 31.816805
+linear_154 : max = 10.054585 threshold = 4.489706 scale = 28.286930
+linear_155 : max = 12.389185 threshold = 3.100321 scale = 40.963501
+linear_157 : max = 9.982999 threshold = 5.154796 scale = 24.637253
+linear_156 : max = 9.982999 threshold = 8.537706 scale = 14.875190
+linear_158 : max = 8.420287 threshold = 6.502287 scale = 19.531588
+linear_159 : max = 25.014746 threshold = 9.423280 scale = 13.477261
+linear_160 : max = 45.633553 threshold = 5.715335 scale = 22.220921
+linear_161 : max = 20.371849 threshold = 5.117830 scale = 24.815203
+linear_162 : max = 12.492933 threshold = 3.126283 scale = 40.623318
+linear_164 : max = 20.697504 threshold = 4.825712 scale = 26.317358
+linear_163 : max = 20.697504 threshold = 5.078367 scale = 25.008038
+linear_165 : max = 9.023975 threshold = 6.836278 scale = 18.577358
+linear_166 : max = 34.860619 threshold = 7.259792 scale = 17.493614
+linear_167 : max = 30.380934 threshold = 5.496160 scale = 23.107042
+linear_168 : max = 20.691216 threshold = 4.733317 scale = 26.831076
+linear_169 : max = 9.723948 threshold = 3.952728 scale = 32.129707
+linear_171 : max = 21.034811 threshold = 5.366547 scale = 23.665123
+linear_170 : max = 21.034811 threshold = 5.356277 scale = 23.710501
+linear_172 : max = 10.556884 threshold = 5.729481 scale = 22.166058
+linear_173 : max = 20.033039 threshold = 10.207264 scale = 12.442120
+linear_174 : max = 11.597379 threshold = 2.658676 scale = 47.768131
+----------joiner----------
+linear_2 : max = 19.293503 threshold = 14.305265 scale = 8.877850
+linear_1 : max = 10.812222 threshold = 8.766452 scale = 14.487047
+linear_3 : max = 0.999999 threshold = 0.999755 scale = 127.031174
+ncnn int8 calibration table create success, best wish for your int8 inference has a low accuracy loss...\(^0^)/...233...
diff --git a/docs/source/model-export/code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt b/docs/source/model-export/code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt
new file mode 100644
index 000000000..114fe7342
--- /dev/null
+++ b/docs/source/model-export/code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt
@@ -0,0 +1,7 @@
+2023-01-11 14:02:12,216 INFO [streaming-ncnn-decode.py:320] {'tokens': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt', 'encoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin', 'decoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param', 'decoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin', 'joiner_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin', 'sound_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav'}
+T 51 32
+2023-01-11 14:02:13,141 INFO [streaming-ncnn-decode.py:328] Constructing Fbank computer
+2023-01-11 14:02:13,151 INFO [streaming-ncnn-decode.py:331] Reading sound files: ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
+2023-01-11 14:02:13,176 INFO [streaming-ncnn-decode.py:336] torch.Size([106000])
+2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:380] ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
+2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:381] AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
diff --git a/docs/source/model-export/export-ncnn.rst b/docs/source/model-export/export-ncnn.rst
index 3dbb8b514..ed0264089 100644
--- a/docs/source/model-export/export-ncnn.rst
+++ b/docs/source/model-export/export-ncnn.rst
@@ -1,12 +1,771 @@
Export to ncnn
==============
-We support exporting LSTM transducer models to `ncnn `_.
-
-Please refer to :ref:`export-model-for-ncnn` for details.
+We support exporting both
+`LSTM transducer models `_
+and
+`ConvEmformer transducer models `_
+to `ncnn `_.
We also provide ``_
performing speech recognition using ``ncnn`` with exported models.
-It has been tested on Linux, macOS, Windows, and Raspberry Pi. The project is
-self-contained and can be statically linked to produce a binary containing
-everything needed.
+It has been tested on Linux, macOS, Windows, ``Android``, and ``Raspberry Pi``.
+
+`sherpa-ncnn`_ is self-contained and can be statically linked to produce
+a binary containing everything needed. Please refer
+to its documentation for details:
+
+ - ``_
+
+
+Export LSTM transducer models
+-----------------------------
+
+Please refer to :ref:`export-lstm-transducer-model-for-ncnn` for details.
+
+
+
+Export ConvEmformer transducer models
+-------------------------------------
+
+We use the pre-trained model from the following repository as an example:
+
+ - ``_
+
+We will show you step by step how to export it to `ncnn`_ and run it with `sherpa-ncnn`_.
+
+.. hint::
+
+ We use ``Ubuntu 18.04``, ``torch 1.10``, and ``Python 3.8`` for testing.
+
+.. caution::
+
+ Please use a more recent version of PyTorch. For instance, ``torch 1.8``
+ may ``not`` work.
+
+1. Download the pre-trained model
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. hint::
+
+ You can also refer to ``_ to download the pre-trained model.
+
+ You have to install `git-lfs`_ before you continue.
+
+.. code-block:: bash
+
+ cd egs/librispeech/ASR
+
+ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
+
+ git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
+ git lfs pull --include "data/lang_bpe_500/bpe.model"
+
+ cd ..
+
+.. note::
+
+ We download ``exp/pretrained-xxx.pt``, not ``exp/cpu-jit_xxx.pt``.
+
+
+In the above code, we download the pre-trained model into the directory
+``egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05``.
+
+2. Install ncnn and pnnx
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: bash
+
+ # We put ncnn into $HOME/open-source/ncnn
+ # You can change it to anywhere you like
+
+ cd $HOME
+ mkdir -p open-source
+ cd open-source
+
+ git clone https://github.com/csukuangfj/ncnn
+ cd ncnn
+ git submodule update --recursive --init
+
+ # Note: We don't use "python setup.py install" or "pip install ." here
+
+ mkdir -p build-wheel
+ cd build-wheel
+
+ cmake \
+ -DCMAKE_BUILD_TYPE=Release \
+ -DNCNN_PYTHON=ON \
+ -DNCNN_BUILD_BENCHMARK=OFF \
+ -DNCNN_BUILD_EXAMPLES=OFF \
+ -DNCNN_BUILD_TOOLS=ON \
+ ..
+
+ make -j4
+
+ cd ..
+
+ # Note: $PWD here is $HOME/open-source/ncnn
+
+ export PYTHONPATH=$PWD/python:$PYTHONPATH
+ export PATH=$PWD/tools/pnnx/build/src:$PATH
+ export PATH=$PWD/build-wheel/tools/quantize:$PATH
+
+ # Now build pnnx
+ cd tools/pnnx
+ mkdir build
+ cd build
+ cmake ..
+ make -j4
+
+ ./src/pnnx
+
+Congratulations! You have successfully installed the following components:
+
+ - ``pnxx``, which is an executable located in
+ ``$HOME/open-source/ncnn/tools/pnnx/build/src``. We will use
+ it to convert models exported by ``torch.jit.trace()``.
+ - ``ncnn2int8``, which is an executable located in
+ ``$HOME/open-source/ncnn/build-wheel/tools/quantize``. We will use
+ it to quantize our models to ``int8``.
+ - ``ncnn.cpython-38-x86_64-linux-gnu.so``, which is a Python module located
+ in ``$HOME/open-source/ncnn/python/ncnn``.
+
+ .. note::
+
+ I am using ``Python 3.8``, so it
+ is ``ncnn.cpython-38-x86_64-linux-gnu.so``. If you use a different
+ version, say, ``Python 3.9``, the name would be
+ ``ncnn.cpython-39-x86_64-linux-gnu.so``.
+
+ Also, if you are not using Linux, the file name would also be different.
+ But that does not matter. As long as you can compile it, it should work.
+
+We have set up ``PYTHONPATH`` so that you can use ``import ncnn`` in your
+Python code. We have also set up ``PATH`` so that you can use
+``pnnx`` and ``ncnn2int8`` later in your terminal.
+
+.. caution::
+
+ Please don't use ``_.
+ We have made some modifications to the offical `ncnn`_.
+
+ We will synchronize ``_ periodically
+ with the official one.
+
+3. Export the model via torch.jit.trace()
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+First, let us rename our pre-trained model:
+
+.. code-block::
+
+ cd egs/librispeech/ASR
+
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp
+
+ ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt
+
+ cd ../..
+
+Next, we use the following code to export our model:
+
+.. code-block:: bash
+
+ dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
+
+ ./conv_emformer_transducer_stateless2/export-for-ncnn.py \
+ --exp-dir $dir/exp \
+ --bpe-model $dir/data/lang_bpe_500/bpe.model \
+ --epoch 30 \
+ --avg 1 \
+ --use-averaged-model 0 \
+ \
+ --num-encoder-layers 12 \
+ --chunk-length 32 \
+ --cnn-module-kernel 31 \
+ --left-context-length 32 \
+ --right-context-length 8 \
+ --memory-size 32 \
+ --encoder-dim 512
+
+.. hint::
+
+ We have renamed our model to ``epoch-30.pt`` so that we can use ``--epoch 30``.
+ There is only one pre-trained model, so we use ``--avg 1 --use-averaged-model 0``.
+
+ If you have trained a model by yourself and if you have all checkpoints
+ available, please first use ``decode.py`` to tune ``--epoch --avg``
+ and select the best combination with with ``--use-averaged-model 1``.
+
+.. note::
+
+ You will see the following log output:
+
+ .. literalinclude:: ./code/export-conv-emformer-transducer-for-ncnn-output.txt
+
+ The log shows the model has ``75490012`` parameters, i.e., ``~75 M``.
+
+ .. code-block::
+
+ ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
+
+ -rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
+
+ You can see that the file size of the pre-trained model is ``289 MB``, which
+ is roughly ``75490012*4/1024/1024 = 287.97 MB``.
+
+After running ``conv_emformer_transducer_stateless2/export-for-ncnn.py``,
+we will get the following files:
+
+.. code-block:: bash
+
+ ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*
+
+ -rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
+ -rw-r--r-- 1 kuangfangjun root 283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
+ -rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt
+
+
+.. _conv-emformer-step-3-export-torchscript-model-via-pnnx:
+
+3. Export torchscript model via pnnx
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. hint::
+
+ Make sure you have set up the ``PATH`` environment variable. Otherwise,
+ it will throw an error saying that ``pnnx`` could not be found.
+
+Now, it's time to export our models to `ncnn`_ via ``pnnx``.
+
+.. code-block::
+
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ pnnx ./encoder_jit_trace-pnnx.pt
+ pnnx ./decoder_jit_trace-pnnx.pt
+ pnnx ./joiner_jit_trace-pnnx.pt
+
+It will generate the following files:
+
+.. code-block:: bash
+
+ ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*{bin,param}
+
+ -rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
+ -rw-r--r-- 1 kuangfangjun root 437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
+ -rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
+ -rw-r--r-- 1 kuangfangjun root 79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
+ -rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
+ -rw-r--r-- 1 kuangfangjun root 488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
+
+There are two types of files:
+
+- ``param``: It is a text file containing the model architectures. You can
+ use a text editor to view its content.
+- ``bin``: It is a binary file containing the model parameters.
+
+We compare the file sizes of the models below before and after converting via ``pnnx``:
+
+.. see https://tableconvert.com/restructuredtext-generator
+
++----------------------------------+------------+
+| File name | File size |
++==================================+============+
+| encoder_jit_trace-pnnx.pt | 283 MB |
++----------------------------------+------------+
+| decoder_jit_trace-pnnx.pt | 1010 KB |
++----------------------------------+------------+
+| joiner_jit_trace-pnnx.pt | 3.0 MB |
++----------------------------------+------------+
+| encoder_jit_trace-pnnx.ncnn.bin | 142 MB |
++----------------------------------+------------+
+| decoder_jit_trace-pnnx.ncnn.bin | 503 KB |
++----------------------------------+------------+
+| joiner_jit_trace-pnnx.ncnn.bin | 1.5 MB |
++----------------------------------+------------+
+
+You can see that the file sizes of the models after conversion are about one half
+of the models before conversion:
+
+ - encoder: 283 MB vs 142 MB
+ - decoder: 1010 KB vs 503 KB
+ - joiner: 3.0 MB vs 1.5 MB
+
+The reason is that by default ``pnnx`` converts ``float32`` parameters
+to ``float16``. A ``float32`` parameter occupies 4 bytes, while it is 2 bytes
+for ``float16``. Thus, it is ``twice smaller`` after conversion.
+
+.. hint::
+
+ If you use ``pnnx ./encoder_jit_trace-pnnx.pt fp16=0``, then ``pnnx``
+ won't convert ``float32`` to ``float16``.
+
+4. Test the exported models in icefall
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. note::
+
+ We assume you have set up the environment variable ``PYTHONPATH`` when
+ building `ncnn`_.
+
+Now we have successfully converted our pre-trained model to `ncnn`_ format.
+The generated 6 files are what we need. You can use the following code to
+test the converted models:
+
+.. code-block:: bash
+
+ ./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
+ --tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt \
+ --encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \
+ --encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \
+ --decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \
+ --decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \
+ --joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \
+ --joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \
+ ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
+
+.. hint::
+
+ `ncnn`_ supports only ``batch size == 1``, so ``streaming-ncnn-decode.py`` accepts
+ only 1 wave file as input.
+
+The output is given below:
+
+.. literalinclude:: ./code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt
+
+Congratulations! You have successfully exported a model from PyTorch to `ncnn`_!
+
+
+.. _conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn:
+
+5. Modify the exported encoder for sherpa-ncnn
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In order to use the exported models in `sherpa-ncnn`_, we have to modify
+``encoder_jit_trace-pnnx.ncnn.param``.
+
+Let us have a look at the first few lines of ``encoder_jit_trace-pnnx.ncnn.param``:
+
+.. code-block::
+
+ 7767517
+ 1060 1342
+ Input in0 0 1 in0
+
+**Explanation** of the above three lines:
+
+ 1. ``7767517``, it is a magic number and should not be changed.
+ 2. ``1060 1342``, the first number ``1060`` specifies the number of layers
+ in this file, while ``1342`` specifies the number of intermediate outputs
+ of this file
+ 3. ``Input in0 0 1 in0``, ``Input`` is the layer type of this layer; ``in0``
+ is the layer name of this layer; ``0`` means this layer has no input;
+ ``1`` means this layer has one output; ``in0`` is the output name of
+ this layer.
+
+We need to add 1 extra line and also increment the number of layers.
+The result looks like below:
+
+.. code-block:: bash
+
+ 7767517
+ 1061 1342
+ SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
+ Input in0 0 1 in0
+
+**Explanation**
+
+ 1. ``7767517``, it is still the same
+ 2. ``1061 1342``, we have added an extra layer, so we need to update ``1060`` to ``1061``.
+ We don't need to change ``1342`` since the newly added layer has no inputs or outputs.
+ 3. ``SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512``
+ This line is newly added. Its explanation is given below:
+
+ - ``SherpaMetaData`` is the type of this layer. Must be ``SherpaMetaData``.
+ - ``sherpa_meta_data1`` is the name of this layer. Must be ``sherpa_meta_data1``.
+ - ``0 0`` means this layer has no inputs or output. Must be ``0 0``
+ - ``0=1``, 0 is the key and 1 is the value. MUST be ``0=1``
+ - ``1=12``, 1 is the key and 12 is the value of the
+ parameter ``--num-encoder-layers`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+ - ``2=32``, 2 is the key and 32 is the value of the
+ parameter ``--memory-size`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+ - ``3=31``, 3 is the key and 31 is the value of the
+ parameter ``--cnn-module-kernel`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+ - ``4=8``, 4 is the key and 8 is the value of the
+ parameter ``--left-context-length`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+ - ``5=32``, 5 is the key and 32 is the value of the
+ parameter ``--chunk-length`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+ - ``6=8``, 6 is the key and 8 is the value of the
+ parameter ``--right-context-length`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+ - ``7=512``, 7 is the key and 512 is the value of the
+ parameter ``--encoder-dim`` that you provided when running
+ ``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
+
+ For ease of reference, we list the key-value pairs that you need to add
+ in the following table. If your model has a different setting, please
+ change the values for ``SherpaMetaData`` accordingly. Otherwise, you
+ will be ``SAD``.
+
+ +------+-----------------------------+
+ | key | value |
+ +======+=============================+
+ | 0 | 1 (fixed) |
+ +------+-----------------------------+
+ | 1 | ``--num-encoder-layers`` |
+ +------+-----------------------------+
+ | 2 | ``--memory-size`` |
+ +------+-----------------------------+
+ | 3 | ``--cnn-module-kernel`` |
+ +------+-----------------------------+
+ | 4 | ``--left-context-length`` |
+ +------+-----------------------------+
+ | 5 | ``--chunk-length`` |
+ +------+-----------------------------+
+ | 6 | ``--right-context-length`` |
+ +------+-----------------------------+
+ | 7 | ``--encoder-dim`` |
+ +------+-----------------------------+
+
+ 4. ``Input in0 0 1 in0``. No need to change it.
+
+.. caution::
+
+ When you add a new layer ``SherpaMetaData``, please remember to update the
+ number of layers. In our case, update ``1060`` to ``1061``. Otherwise,
+ you will be SAD later.
+
+.. hint::
+
+ After adding the new layer ``SherpaMetaData``, you cannot use this model
+ with ``streaming-ncnn-decode.py`` anymore since ``SherpaMetaData`` is
+ supported only in `sherpa-ncnn`_.
+
+.. hint::
+
+ `ncnn`_ is very flexible. You can add new layers to it just by text-editing
+ the ``param`` file! You don't need to change the ``bin`` file.
+
+Now you can use this model in `sherpa-ncnn`_.
+Please refer to the following documentation:
+
+ - Linux/macOS/Windows/arm/aarch64: ``_
+ - Android: ``_
+ - Python: ``_
+
+We have a list of pre-trained models that have been exported for `sherpa-ncnn`_:
+
+ - ``_
+
+ You can find more usages there.
+
+6. (Optional) int8 quantization with sherpa-ncnn
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This step is optional.
+
+In this step, we describe how to quantize our model with ``int8``.
+
+Change :ref:`conv-emformer-step-3-export-torchscript-model-via-pnnx` to
+disable ``fp16`` when using ``pnnx``:
+
+.. code-block::
+
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ pnnx ./encoder_jit_trace-pnnx.pt fp16=0
+ pnnx ./decoder_jit_trace-pnnx.pt
+ pnnx ./joiner_jit_trace-pnnx.pt fp16=0
+
+.. note::
+
+ We add ``fp16=0`` when exporting the encoder and joiner. `ncnn`_ does not
+ support quantizing the decoder model yet. We will update this documentation
+ once `ncnn`_ supports it. (Maybe in this year, 2023).
+
+It will generate the following files
+
+.. code-block:: bash
+
+ ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*_jit_trace-pnnx.ncnn.{param,bin}
+
+ -rw-r--r-- 1 kuangfangjun root 503K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
+ -rw-r--r-- 1 kuangfangjun root 437 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
+ -rw-r--r-- 1 kuangfangjun root 283M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
+ -rw-r--r-- 1 kuangfangjun root 79K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
+ -rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
+ -rw-r--r-- 1 kuangfangjun root 488 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
+
+Let us compare again the file sizes:
+
++----------------------------------------+------------+
+| File name | File size |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.pt | 283 MB |
++----------------------------------------+------------+
+| decoder_jit_trace-pnnx.pt | 1010 KB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.pt | 3.0 MB |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB |
++----------------------------------------+------------+
+| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB |
++----------------------------------------+------------+
+
+You can see that the file sizes are doubled when we disable ``fp16``.
+
+.. note::
+
+ You can again use ``streaming-ncnn-decode.py`` to test the exported models.
+
+Next, follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn`
+to modify ``encoder_jit_trace-pnnx.ncnn.param``.
+
+Change
+
+.. code-block:: bash
+
+ 7767517
+ 1060 1342
+ Input in0 0 1 in0
+
+to
+
+.. code-block:: bash
+
+ 7767517
+ 1061 1342
+ SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
+ Input in0 0 1 in0
+
+.. caution::
+
+ Please follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn`
+ to change the values for ``SherpaMetaData`` if your model uses a different setting.
+
+
+Next, let us compile `sherpa-ncnn`_ since we will quantize our models within
+`sherpa-ncnn`_.
+
+.. code-block:: bash
+
+ # We will download sherpa-ncnn to $HOME/open-source/
+ # You can change it to anywhere you like.
+ cd $HOME
+ mkdir -p open-source
+
+ cd open-source
+ git clone https://github.com/k2-fsa/sherpa-ncnn
+ cd sherpa-ncnn
+ mkdir build
+ cd build
+ cmake ..
+ make -j 4
+
+ ./bin/generate-int8-scale-table
+
+ export PATH=$HOME/open-source/sherpa-ncnn/build/bin:$PATH
+
+The output of the above commands are:
+
+.. code-block:: bash
+
+ (py38) kuangfangjun:build$ generate-int8-scale-table
+ Please provide 10 arg. Currently given: 1
+ Usage:
+ generate-int8-scale-table encoder.param encoder.bin decoder.param decoder.bin joiner.param joiner.bin encoder-scale-table.txt joiner-scale-table.txt wave_filenames.txt
+
+ Each line in wave_filenames.txt is a path to some 16k Hz mono wave file.
+
+We need to create a file ``wave_filenames.txt``, in which we need to put
+some calibration wave files. For testing purpose, we put the ``test_wavs``
+from the pre-trained model repository ``_
+
+.. code-block:: bash
+
+ cd egs/librispeech/ASR
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ cat < wave_filenames.txt
+ ../test_wavs/1089-134686-0001.wav
+ ../test_wavs/1221-135766-0001.wav
+ ../test_wavs/1221-135766-0002.wav
+ EOF
+
+Now we can calculate the scales needed for quantization with the calibration data:
+
+.. code-block:: bash
+
+ cd egs/librispeech/ASR
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ generate-int8-scale-table \
+ ./encoder_jit_trace-pnnx.ncnn.param \
+ ./encoder_jit_trace-pnnx.ncnn.bin \
+ ./decoder_jit_trace-pnnx.ncnn.param \
+ ./decoder_jit_trace-pnnx.ncnn.bin \
+ ./joiner_jit_trace-pnnx.ncnn.param \
+ ./joiner_jit_trace-pnnx.ncnn.bin \
+ ./encoder-scale-table.txt \
+ ./joiner-scale-table.txt \
+ ./wave_filenames.txt
+
+The output logs are in the following:
+
+.. literalinclude:: ./code/generate-int-8-scale-table-for-conv-emformer.txt
+
+It generates the following two files:
+
+.. code-block:: bash
+
+ $ ls -lh encoder-scale-table.txt joiner-scale-table.txt
+ -rw-r--r-- 1 kuangfangjun root 955K Jan 11 17:28 encoder-scale-table.txt
+ -rw-r--r-- 1 kuangfangjun root 18K Jan 11 17:28 joiner-scale-table.txt
+
+.. caution::
+
+ Definitely, you need more calibration data to compute the scale table.
+
+Finally, let us use the scale table to quantize our models into ``int8``.
+
+.. code-block:: bash
+
+ ncnn2int8
+
+ usage: ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table]
+
+First, we quantize the encoder model:
+
+.. code-block:: bash
+
+ cd egs/librispeech/ASR
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ ncnn2int8 \
+ ./encoder_jit_trace-pnnx.ncnn.param \
+ ./encoder_jit_trace-pnnx.ncnn.bin \
+ ./encoder_jit_trace-pnnx.ncnn.int8.param \
+ ./encoder_jit_trace-pnnx.ncnn.int8.bin \
+ ./encoder-scale-table.txt
+
+Next, we quantize the joiner model:
+
+.. code-block:: bash
+
+ ncnn2int8 \
+ ./joiner_jit_trace-pnnx.ncnn.param \
+ ./joiner_jit_trace-pnnx.ncnn.bin \
+ ./joiner_jit_trace-pnnx.ncnn.int8.param \
+ ./joiner_jit_trace-pnnx.ncnn.int8.bin \
+ ./joiner-scale-table.txt
+
+The above two commands generate the following 4 files:
+
+.. code-block:: bash
+
+ -rw-r--r-- 1 kuangfangjun root 99M Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.bin
+ -rw-r--r-- 1 kuangfangjun root 78K Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.param
+ -rw-r--r-- 1 kuangfangjun root 774K Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.bin
+ -rw-r--r-- 1 kuangfangjun root 496 Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.param
+
+Congratulations! You have successfully quantized your model from ``float32`` to ``int8``.
+
+.. caution::
+
+ ``ncnn.int8.param`` and ``ncnn.int8.bin`` must be used in pairs.
+
+ You can replace ``ncnn.param`` and ``ncnn.bin`` with ``ncnn.int8.param``
+ and ``ncnn.int8.bin`` in `sherpa-ncnn`_ if you like.
+
+ For instance, to use only the ``int8`` encoder in ``sherpa-ncnn``, you can
+ replace the following invocation:
+
+ .. code-block::
+
+ cd egs/librispeech/ASR
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ sherpa-ncnn \
+ ../data/lang_bpe_500/tokens.txt \
+ ./encoder_jit_trace-pnnx.ncnn.param \
+ ./encoder_jit_trace-pnnx.ncnn.bin \
+ ./decoder_jit_trace-pnnx.ncnn.param \
+ ./decoder_jit_trace-pnnx.ncnn.bin \
+ ./joiner_jit_trace-pnnx.ncnn.param \
+ ./joiner_jit_trace-pnnx.ncnn.bin \
+ ../test_wavs/1089-134686-0001.wav
+
+ with
+
+ .. code-block::
+
+ cd egs/librispeech/ASR
+ cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
+
+ sherpa-ncnn \
+ ../data/lang_bpe_500/tokens.txt \
+ ./encoder_jit_trace-pnnx.ncnn.int8.param \
+ ./encoder_jit_trace-pnnx.ncnn.int8.bin \
+ ./decoder_jit_trace-pnnx.ncnn.param \
+ ./decoder_jit_trace-pnnx.ncnn.bin \
+ ./joiner_jit_trace-pnnx.ncnn.param \
+ ./joiner_jit_trace-pnnx.ncnn.bin \
+ ../test_wavs/1089-134686-0001.wav
+
+
+The following table compares again the file sizes:
+
+
++----------------------------------------+------------+
+| File name | File size |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.pt | 283 MB |
++----------------------------------------+------------+
+| decoder_jit_trace-pnnx.pt | 1010 KB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.pt | 3.0 MB |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB |
++----------------------------------------+------------+
+| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB |
++----------------------------------------+------------+
+| encoder_jit_trace-pnnx.ncnn.int8.bin | 99 MB |
++----------------------------------------+------------+
+| joiner_jit_trace-pnnx.ncnn.int8.bin | 774 KB |
++----------------------------------------+------------+
+
+You can see that the file sizes of the model after ``int8`` quantization
+are much smaller.
+
+.. hint::
+
+ Currently, only linear layers and convolutional layers are quantized
+ with ``int8``, so you don't see an exact ``4x`` reduction in file sizes.
+
+.. note::
+
+ You need to test the recognition accuracy after ``int8`` quantization.
+
+You can find the speed comparison at ``_.
+
+
+That's it! Have fun with `sherpa-ncnn`_!
diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/distillation.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/distillation.rst
new file mode 100644
index 000000000..ea9f350cd
--- /dev/null
+++ b/docs/source/recipes/Non-streaming-ASR/librispeech/distillation.rst
@@ -0,0 +1,223 @@
+Distillation with HuBERT
+========================
+
+This tutorial shows you how to perform knowledge distillation in `icefall`_
+with the `LibriSpeech`_ dataset. The distillation method
+used here is called "Multi Vector Quantization Knowledge Distillation" (MVQ-KD).
+Please have a look at our paper `Predicting Multi-Codebook Vector Quantization Indexes for Knowledge Distillation `_
+for more details about MVQ-KD.
+
+.. note::
+
+ This tutorial is based on recipe
+ `pruned_transducer_stateless4 `_.
+ Currently, we only implement MVQ-KD in this recipe. However, MVQ-KD is theoretically applicable to all recipes
+ with only minor changes needed. Feel free to try out MVQ-KD in different recipes. If you
+ encounter any problems, please open an issue here `icefall `_.
+
+.. note::
+
+ We assume you have read the page :ref:`install icefall` and have setup
+ the environment for `icefall`_.
+
+.. HINT::
+
+ We recommend you to use a GPU or several GPUs to run this recipe.
+
+Data preparation
+----------------
+
+We first prepare necessary training data for `LibriSpeech`_.
+This is the same as in :ref:`non_streaming_librispeech_pruned_transducer_stateless`.
+
+.. hint::
+
+ The data preparation is the same as other recipes on LibriSpeech dataset,
+ if you have finished this step, you can skip to :ref:`codebook_index_preparation` directly.
+
+.. code-block:: bash
+
+ $ cd egs/librispeech/ASR
+ $ ./prepare.sh
+
+The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
+All you need to do is to run it.
+
+The data preparation contains several stages, you can use the following two
+options:
+
+ - ``--stage``
+ - ``--stop-stage``
+
+to control which stage(s) should be run. By default, all stages are executed.
+
+For example,
+
+.. code-block:: bash
+
+ $ cd egs/librispeech/ASR
+ $ ./prepare.sh --stage 0 --stop-stage 0 # run only stage 0
+ $ ./prepare.sh --stage 2 --stop-stage 5 # run from stage 2 to stage 5
+
+.. HINT::
+
+ If you have pre-downloaded the `LibriSpeech`_
+ dataset and the `musan`_ dataset, say,
+ they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
+ the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
+ ``./prepare.sh`` won't re-download them.
+
+.. NOTE::
+
+ All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
+ are saved in ``./data`` directory.
+
+We provide the following YouTube video showing how to run ``./prepare.sh``.
+
+.. note::
+
+ To get the latest news of `next-gen Kaldi `_, please subscribe
+ the following YouTube channel by `Nadira Povey `_:
+
+ ``_
+
+.. youtube:: ofEIoJL-mGM
+
+
+.. _codebook_index_preparation:
+
+Codebook index preparation
+--------------------------
+
+Here, we prepare necessary data for MVQ-KD. This requires the generation
+of codebook indexes (please read our `paper `_.
+if you are interested in details). In this tutorial, we use the pre-computed
+codebook indexes for convenience. The only thing you need to do is to
+run `./distillation_with_hubert.sh `_.
+
+.. note::
+
+ There are 5 stages in total, the first and second stage will be automatically skipped
+ when choosing to downloaded codebook indexes prepared by `icefall`_.
+ Of course, you can extract and compute the codebook indexes by yourself. This
+ will require you downloading a HuBERT-XL model and it can take a while for
+ the extraction of codebook indexes.
+
+
+As usual, you can control the stages you want to run by specifying the following
+two options:
+
+ - ``--stage``
+ - ``--stop-stage``
+
+For example,
+
+.. code-block:: bash
+
+ $ cd egs/librispeech/ASR
+ $ ./distillation_with_hubert.sh --stage 0 --stop-stage 0 # run only stage 0
+ $ ./distillation_with_hubert.sh --stage 2 --stop-stage 4 # run from stage 2 to stage 5
+
+Here are a few options in `./distillation_with_hubert.sh `_
+you need to know before you proceed.
+
+- ``--full_libri`` If True, use full 960h data. Otherwise only ``train-clean-100`` will be used
+- ``--use_extracted_codebook`` If True, the first two stages will be skipped and the codebook
+ indexes uploaded by us will be downloaded.
+
+Since we are using the pre-computed codebook indexes, we set
+``use_extracted_codebook=True``. If you want to do full `LibriSpeech`_
+experiments, please set ``full_libri=True``.
+
+The following command downloads the pre-computed codebook indexes
+and prepares MVQ-augmented training manifests.
+
+.. code-block:: bash
+
+ $ ./distillation_with_hubert.sh --stage 2 --stop-stage 2 # run only stage 2
+
+Please see the
+following screenshot for the output of an example execution.
+
+.. figure:: ./images/distillation_codebook.png
+ :width: 800
+ :alt: Downloading codebook indexes and preparing training manifest.
+ :align: center
+
+ Downloading codebook indexes and preparing training manifest.
+
+.. hint::
+
+ The codebook indexes we prepared for you in this tutorial
+ are extracted from the 36-th layer of a fine-tuned HuBERT-XL model
+ with 8 codebooks. If you want to try other configurations, please
+ set ``use_extracted_codebook=False`` and set ``embedding_layer`` and
+ ``num_codebooks`` by yourself.
+
+Now, you should see the following files under the directory ``./data/vq_fbank_layer36_cb8``.
+
+.. figure:: ./images/distillation_directory.png
+ :width: 800
+ :alt: MVQ-augmented training manifests
+ :align: center
+
+ MVQ-augmented training manifests.
+
+Whola! You are ready to perform knowledge distillation training now!
+
+Training
+--------
+
+To perform training, please run stage 3 by executing the following command.
+
+.. code-block:: bash
+
+ $ ./prepare.sh --stage 3 --stop-stage 3 # run MVQ training
+
+Here is the code snippet for training:
+
+.. code-block:: bash
+
+ WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}')
+
+ ./pruned_transducer_stateless6/train.py \
+ --manifest-dir ./data/vq_fbank_layer36_cb8 \
+ --master-port 12359 \
+ --full-libri $full_libri \
+ --spec-aug-time-warp-factor -1 \
+ --max-duration 300 \
+ --world-size ${WORLD_SIZE} \
+ --num-epochs 30 \
+ --exp-dir $exp_dir \
+ --enable-distillation True \
+ --codebook-loss-scale 0.01
+
+There are a few training arguments in the following
+training commands that should be paid attention to.
+
+ - ``--enable-distillation`` If True, knowledge distillation training is enabled.
+ - ``--codebook-loss-scale`` The scale of the knowledge distillation loss.
+ - ``--manifest-dir`` The path to the MVQ-augmented manifest.
+
+
+Decoding
+--------
+
+After training finished, you can test the performance on using
+the following command.
+
+.. code-block:: bash
+
+ export CUDA_VISIBLE_DEVICES=0
+ ./pruned_transducer_stateless6/train.py \
+ --decoding-method "modified_beam_search" \
+ --epoch 30 \
+ --avg 10 \
+ --max-duration 200 \
+ --exp-dir $exp_dir \
+ --enable-distillation True
+
+You should get similar results as `here `_.
+
+That's all! Feel free to experiment with your own setups and report your results.
+If you encounter any problems during training, please open up an issue `here `_.
diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_codebook.png b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_codebook.png
new file mode 100644
index 000000000..1a40d6c6e
Binary files /dev/null and b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_codebook.png differ
diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_directory.png b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_directory.png
new file mode 100644
index 000000000..30763046f
Binary files /dev/null and b/docs/source/recipes/Non-streaming-ASR/librispeech/images/distillation_directory.png differ
diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst
index 3ebb36b25..bf439861a 100644
--- a/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst
+++ b/docs/source/recipes/Non-streaming-ASR/librispeech/index.rst
@@ -9,3 +9,4 @@ LibriSpeech
pruned_transducer_stateless
zipformer_mmi
zipformer_ctc_blankskip
+ distillation
diff --git a/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst b/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst
index 86d43c8fe..42fd3df77 100644
--- a/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst
+++ b/docs/source/recipes/Non-streaming-ASR/librispeech/pruned_transducer_stateless.rst
@@ -1,3 +1,5 @@
+.. _non_streaming_librispeech_pruned_transducer_stateless:
+
Pruned transducer statelessX
============================
diff --git a/docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst b/docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst
index 643855cc2..ce8ba1453 100644
--- a/docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst
+++ b/docs/source/recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.rst
@@ -515,10 +515,10 @@ To use the generated files with ``./lstm_transducer_stateless2/jit_pretrained``:
Please see ``_
for how to use the exported models in ``sherpa``.
-.. _export-model-for-ncnn:
+.. _export-lstm-transducer-model-for-ncnn:
-Export model for ncnn
-~~~~~~~~~~~~~~~~~~~~~
+Export LSTM transducer models for ncnn
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We support exporting pretrained LSTM transducer models to
`ncnn `_ using
@@ -531,16 +531,36 @@ First, let us install a modified version of ``ncnn``:
git clone https://github.com/csukuangfj/ncnn
cd ncnn
git submodule update --recursive --init
- python3 setup.py bdist_wheel
- ls -lh dist/
- pip install ./dist/*.whl
+
+ # Note: We don't use "python setup.py install" or "pip install ." here
+
+ mkdir -p build-wheel
+ cd build-wheel
+
+ cmake \
+ -DCMAKE_BUILD_TYPE=Release \
+ -DNCNN_PYTHON=ON \
+ -DNCNN_BUILD_BENCHMARK=OFF \
+ -DNCNN_BUILD_EXAMPLES=OFF \
+ -DNCNN_BUILD_TOOLS=ON \
+ ..
+
+ make -j4
+
+ cd ..
+
+ # Note: $PWD here is /path/to/ncnn
+
+ export PYTHONPATH=$PWD/python:$PYTHONPATH
+ export PATH=$PWD/tools/pnnx/build/src:$PATH
+ export PATH=$PWD/build-wheel/tools/quantize:$PATH
# now build pnnx
cd tools/pnnx
mkdir build
cd build
+ cmake ..
make -j4
- export PATH=$PWD/src:$PATH
./src/pnnx
@@ -549,6 +569,9 @@ First, let us install a modified version of ``ncnn``:
We assume that you have added the path to the binary ``pnnx`` to the
environment variable ``PATH``.
+ We also assume that you have added ``build/tools/quantize`` to the environment
+ variable ``PATH`` so that you are able to use ``ncnn2int8`` later.
+
Second, let us export the model using ``torch.jit.trace()`` that is suitable
for ``pnnx``:
@@ -634,3 +657,6 @@ by visiting the following links:
You can find more usages of the pretrained models in
``_
+
+Export ConvEmformer transducer models for ncnn
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py
index 188059044..f0c92a9b4 100644
--- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py
+++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/emformer2.py
@@ -1512,24 +1512,6 @@ class EmformerEncoder(nn.Module):
)
return states
- attn_caches = [
- [
- torch.zeros(self.memory_size, self.d_model, device=device),
- torch.zeros(self.left_context_length, self.d_model, device=device),
- torch.zeros(self.left_context_length, self.d_model, device=device),
- ]
- for _ in range(self.num_encoder_layers)
- ]
- conv_caches = [
- torch.zeros(self.d_model, self.cnn_module_kernel - 1, device=device)
- for _ in range(self.num_encoder_layers)
- ]
- states: Tuple[List[List[torch.Tensor]], List[torch.Tensor]] = (
- attn_caches,
- conv_caches,
- )
- return states
-
class Emformer(EncoderInterface):
def __init__(
diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py
index b21fe5c7e..e4104a5bb 100755
--- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py
+++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming-ncnn-decode.py
@@ -131,6 +131,8 @@ class Model:
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
+ encoder_net.opt.num_threads = 4
+
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
@@ -144,6 +146,7 @@ class Model:
decoder_model = args.decoder_bin_filename
decoder_net = ncnn.Net()
+ decoder_net.opt.num_threads = 4
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
@@ -154,6 +157,8 @@ class Model:
joiner_param = args.joiner_param_filename
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
+ joiner_net.opt.num_threads = 4
+
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
@@ -176,7 +181,6 @@ class Model:
- next_states, a list of tensors containing the next states
"""
with self.encoder_net.create_extractor() as ex:
- ex.set_num_threads(4)
ex.input("in0", ncnn.Mat(x.numpy()).clone())
# layer0 in2-in5
@@ -220,7 +224,6 @@ class Model:
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
- ex.set_num_threads(4)
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
@@ -229,7 +232,6 @@ class Model:
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
- ex.set_num_threads(4)
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
diff --git a/egs/librispeech/ASR/distillation_with_hubert.sh b/egs/librispeech/ASR/distillation_with_hubert.sh
index a38cf590c..6aaa0333b 100755
--- a/egs/librispeech/ASR/distillation_with_hubert.sh
+++ b/egs/librispeech/ASR/distillation_with_hubert.sh
@@ -150,7 +150,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
num_codebooks=8
mkdir -p $exp_dir/vq
- codebook_dir=$exp_dir/vq/${teacher_model_id}_layer${embedding_layer}_cb${num_codebooks}
+ codebook_dir=$exp_dir/vq/${teacher_model_id}
mkdir -p codebook_dir
codebook_download_dir=$exp_dir/download_codebook
if [ -d $codebook_download_dir ]; then
@@ -180,9 +180,9 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
./pruned_transducer_stateless6/extract_codebook_index.py \
--full-libri $full_libri \
--exp-dir $exp_dir \
- --embedding-layer 36 \
+ --embedding-layer $embedding_layer \
--num-utts 1000 \
- --num-codebooks 8 \
+ --num-codebooks $num_codebooks \
--max-duration 100 \
--teacher-model-id $teacher_model_id \
--use-extracted-codebook $use_extracted_codebook
diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py b/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py
index 3b471fa85..3bd1b0a09 100755
--- a/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py
+++ b/egs/librispeech/ASR/lstm_transducer_stateless2/ncnn-decode.py
@@ -104,6 +104,8 @@ class Model:
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
+ encoder_net.opt.num_threads = 4
+
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
@@ -118,6 +120,7 @@ class Model:
decoder_net = ncnn.Net()
decoder_net.opt.use_packing_layout = False
+ decoder_net.opt.num_threads = 4
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
@@ -129,6 +132,8 @@ class Model:
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
joiner_net.opt.use_packing_layout = False
+ joiner_net.opt.num_threads = 4
+
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
@@ -136,7 +141,6 @@ class Model:
def run_encoder(self, x, states):
with self.encoder_net.create_extractor() as ex:
- ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(x.numpy()).clone())
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
@@ -165,7 +169,6 @@ class Model:
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
- ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
@@ -174,7 +177,6 @@ class Model:
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
- ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
diff --git a/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py b/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py
index baff15ea6..02ed16a8c 100755
--- a/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py
+++ b/egs/librispeech/ASR/lstm_transducer_stateless2/streaming-ncnn-decode.py
@@ -92,6 +92,8 @@ class Model:
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
+ encoder_net.opt.num_threads = 4
+
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
@@ -106,6 +108,7 @@ class Model:
decoder_net = ncnn.Net()
decoder_net.opt.use_packing_layout = False
+ decoder_net.opt.num_threads = 4
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
@@ -117,6 +120,8 @@ class Model:
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
joiner_net.opt.use_packing_layout = False
+ joiner_net.opt.num_threads = 4
+
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
@@ -124,7 +129,6 @@ class Model:
def run_encoder(self, x, states):
with self.encoder_net.create_extractor() as ex:
- # ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(x.numpy()).clone())
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
@@ -153,7 +157,6 @@ class Model:
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
- # ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
@@ -162,7 +165,6 @@ class Model:
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
- # ex.set_num_threads(10)
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py
index 9c23e7d66..4b373e4c7 100755
--- a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py
+++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc/ctc_decode.py
@@ -44,7 +44,7 @@ Usage:
--exp-dir ./pruned_transducer_stateless7_ctc/exp \
--max-duration 600 \
--hlg-scale 0.8 \
- --decoding-method 1best
+ --decoding-method nbest
(4) nbest-rescoring
./pruned_transducer_stateless7_ctc/ctc_decode.py \
diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py
index 0ef733226..f137485b2 100755
--- a/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py
+++ b/egs/librispeech/ASR/pruned_transducer_stateless7_ctc_bs/ctc_decode.py
@@ -42,7 +42,7 @@ Usage:
--exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \
--max-duration 600 \
--hlg-scale 0.8 \
- --decoding-method 1best
+ --decoding-method nbest
(4) nbest-rescoring
./pruned_transducer_stateless7_ctc_bs/ctc_decode.py \
--epoch 30 \