mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
Merge b49510e2bf7064f4f60650e6787288db1bad2941 into 6caff5fd38a09c231fbd728a2c4d3f3ac14e4455
This commit is contained in:
commit
0210d58965
@ -22,33 +22,51 @@ class Joiner(nn.Module):
|
||||
def __init__(self, input_dim: int, output_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.output_linear = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(
|
||||
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
decoder_out: torch.Tensor,
|
||||
encoder_out_len: torch.Tensor,
|
||||
decoder_out_len: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C).
|
||||
Output from the encoder. Its shape is (N, T, self.input_dim).
|
||||
decoder_out:
|
||||
Output from the decoder. Its shape is (N, U, C).
|
||||
Output from the decoder. Its shape is (N, U, self.input_dim).
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, U, C).
|
||||
Return a tensor of shape (sum_all_TU, self.output_dim).
|
||||
"""
|
||||
assert encoder_out.ndim == decoder_out.ndim == 3
|
||||
assert encoder_out.size(0) == decoder_out.size(0)
|
||||
assert encoder_out.size(2) == decoder_out.size(2)
|
||||
assert encoder_out.size(2) == self.input_dim
|
||||
assert decoder_out.size(2) == self.input_dim
|
||||
|
||||
encoder_out = encoder_out.unsqueeze(2)
|
||||
# Now encoder_out is (N, T, 1, C)
|
||||
N = encoder_out.size(0)
|
||||
|
||||
decoder_out = decoder_out.unsqueeze(1)
|
||||
# Now decoder_out is (N, 1, U, C)
|
||||
encoder_out_list = [
|
||||
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
||||
]
|
||||
|
||||
logit = encoder_out + decoder_out
|
||||
logit = torch.tanh(logit)
|
||||
decoder_out_list = [
|
||||
decoder_out[i, : decoder_out_len[i], :] for i in range(N)
|
||||
]
|
||||
|
||||
output = self.output_linear(logit)
|
||||
x = [
|
||||
e.unsqueeze(1) + d.unsqueeze(0)
|
||||
for e, d in zip(encoder_out_list, decoder_out_list)
|
||||
]
|
||||
|
||||
return output
|
||||
x = [p.reshape(-1, self.input_dim) for p in x]
|
||||
x = torch.cat(x)
|
||||
|
||||
activations = torch.tanh(x)
|
||||
|
||||
logits = self.output_linear(activations)
|
||||
|
||||
return logits
|
||||
|
@ -14,20 +14,71 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Note we use `rnnt_loss` from torchaudio, which exists only in
|
||||
torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0
|
||||
"""
|
||||
import math
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
import torchaudio.functional
|
||||
from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
|
||||
def reverse_label_smoothing(
|
||||
logprobs: torch.Tensor, alpha: float
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
This function is written by Dan.
|
||||
|
||||
Modifies `logprobs` in such a way that if you compute a data probability
|
||||
using `logprobs`, it will be equivalent to a label-smoothed data probability
|
||||
with the supplied label-smoothing constant alpha (e.g. alpha=0.1).
|
||||
This allows us to use `logprobs` in things like RNN-T and CTC and
|
||||
get a kind of label-smoothed version of those sequence objectives.
|
||||
|
||||
Label smoothing means that if the reference label is i, we convert it
|
||||
into a distribution with weight (1-alpha) on i, and alpha distributed
|
||||
equally to all labels (including i itself).
|
||||
|
||||
Note: the output logprobs can be interpreted as cross-entropies, meaning
|
||||
we correct for the entropy of the smoothed distribution.
|
||||
|
||||
Args:
|
||||
logprobs:
|
||||
A Tensor of shape (*, num_classes), containing logprobs that sum
|
||||
to one: e.g. the output of log_softmax.
|
||||
alpha:
|
||||
A constant that defines the extent of label smoothing, e.g. 0.1.
|
||||
|
||||
Returns:
|
||||
modified_logprobs, a Tensor of shape (*, num_classes), containing
|
||||
"fake" logprobs that will give you label-smoothed probabilities.
|
||||
"""
|
||||
assert alpha >= 0.0 and alpha < 1
|
||||
if alpha == 0.0:
|
||||
return logprobs
|
||||
num_classes = logprobs.shape[-1]
|
||||
|
||||
# We correct for the entropy of the label-smoothed target distribution, so
|
||||
# the resulting logprobs can be thought of as cross-entropies, which are
|
||||
# more interpretable.
|
||||
#
|
||||
# The expression for entropy below is not quite correct -- it treats
|
||||
# the target label and the smoothed version of the target label as being
|
||||
# separate classes -- but this can be thought of as an adjustment
|
||||
# for the way we compute the likelihood below, which also treats the
|
||||
# target label and its smoothed version as being separate.
|
||||
target_entropy = -(
|
||||
(1 - alpha) * math.log(1 - alpha)
|
||||
+ alpha * math.log(alpha / num_classes)
|
||||
)
|
||||
sum_logprob = logprobs.sum(dim=-1, keepdim=True)
|
||||
|
||||
return (
|
||||
logprobs * (1 - alpha) + sum_logprob * (alpha / num_classes)
|
||||
) + target_entropy
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
@ -68,6 +119,7 @@ class Transducer(nn.Module):
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
label_smoothing_factor: float,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
@ -79,6 +131,8 @@ class Transducer(nn.Module):
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
label_smoothing_factor:
|
||||
The factor for label smoothing. Should be in the range [0, 1).
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
"""
|
||||
@ -102,24 +156,35 @@ class Transducer(nn.Module):
|
||||
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
logits = self.joiner(encoder_out, decoder_out)
|
||||
# +1 here since a blank is prepended to each utterance.
|
||||
logits = self.joiner(
|
||||
encoder_out=encoder_out,
|
||||
decoder_out=decoder_out,
|
||||
encoder_out_len=x_lens,
|
||||
decoder_out_len=y_lens + 1,
|
||||
)
|
||||
# logits is of shape (sum_all_TU, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1)
|
||||
log_probs = reverse_label_smoothing(log_probs, label_smoothing_factor)
|
||||
|
||||
# rnnt_loss requires 0 padded targets
|
||||
# Note: y does not start with SOS
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
assert hasattr(torchaudio.functional, "rnnt_loss"), (
|
||||
f"Current torchaudio version: {torchaudio.__version__}\n"
|
||||
"Please install a version >= 0.10.0"
|
||||
)
|
||||
# We don't put this `import` at the beginning of the file
|
||||
# as it is required only in the training, not during the
|
||||
# reference stage
|
||||
import optimized_transducer
|
||||
|
||||
loss = torchaudio.functional.rnnt_loss(
|
||||
logits=logits,
|
||||
loss = optimized_transducer.transducer_loss(
|
||||
logits=log_probs,
|
||||
targets=y_padded,
|
||||
logit_lengths=x_lens,
|
||||
target_lengths=y_lens,
|
||||
blank=blank_id,
|
||||
reduction="sum",
|
||||
from_log_softmax=True,
|
||||
)
|
||||
|
||||
return loss
|
||||
|
@ -138,6 +138,13 @@ def get_parser():
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--label-smoothing-factor",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The factor for label smoothing",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -383,7 +390,12 @@ def compute_loss(
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
loss = model(x=feature, x_lens=feature_lens, y=y)
|
||||
loss = model(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
y=y,
|
||||
label_smoothing_factor=params.label_smoothing_factor,
|
||||
)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user