update RESULTS.md

This commit is contained in:
marcoyang 2024-08-21 16:57:46 +08:00
parent fcf06872a2
commit 01a85c5335

View File

@ -35,16 +35,40 @@ python zipformer/train.py \
--master-port 13455
```
We recommend that you train the model with weighted sampler, as the model converges
faster with better performance:
| Model | mAP |
| ------ | ------- |
| Zipformer-AT, train with weighted sampler | 46.6 |
The evaluation command is:
```bash
python zipformer/evaluate.py \
--epoch 32 \
--avg 8 \
--exp-dir zipformer/exp_at_as_full \
--max-duration 500
export CUDA_VISIBLE_DEVICES="4,5,6,7"
subset=full
weighted_sampler=1
bucket_sampler=0
lr_epochs=15
python zipformer/train.py \
--world-size 4 \
--audioset-subset $subset \
--num-epochs 120 \
--start-epoch 1 \
--use-fp16 1 \
--num-events 527 \
--lr-epochs $lr_epochs \
--exp-dir zipformer/exp_AS_${subset}_weighted_sampler${weighted_sampler} \
--weighted-sampler $weighted_sampler \
--bucketing-sampler $bucket_sampler \
--max-duration 1000 \
--enable-musan True \
--master-port 13452
```
The command for evaluation is the same. The pre-trained model can be downloaded from https://huggingface.co/marcoyang/icefall-audio-tagging-audioset-zipformer-M-weighted-sampler
#### small-scaled model, number of model parameters: 22125218, i.e., 22.13 M