diff --git a/egs/libritts/CODEC/encodec/binary.py b/egs/libritts/CODEC/encodec/binary.py index 0f552fb99..003bcfaf5 100644 --- a/egs/libritts/CODEC/encodec/binary.py +++ b/egs/libritts/CODEC/encodec/binary.py @@ -132,7 +132,7 @@ def test(): for rep in range(4): length: int = torch.randint(10, 2_000, (1,)).item() bits: int = torch.randint(1, 16, (1,)).item() - tokens: List[int] = torch.randint(2 ** bits, (length,)).tolist() + tokens: List[int] = torch.randint(2**bits, (length,)).tolist() rebuilt: List[int] = [] buf = io.BytesIO() packer = BitPacker(bits, buf) diff --git a/egs/libritts/CODEC/encodec/loss.py b/egs/libritts/CODEC/encodec/loss.py index 8675841b2..9cf1d42d2 100644 --- a/egs/libritts/CODEC/encodec/loss.py +++ b/egs/libritts/CODEC/encodec/loss.py @@ -235,7 +235,7 @@ class MelSpectrogramReconstructionLoss(torch.nn.Module): super().__init__() self.wav_to_specs = [] for i in range(5, 12): - s = 2 ** i + s = 2**i self.wav_to_specs.append( MelSpectrogram( sample_rate=sampling_rate, diff --git a/egs/libritts/CODEC/encodec/modules/seanet.py b/egs/libritts/CODEC/encodec/modules/seanet.py index 38f2f8728..76999b298 100644 --- a/egs/libritts/CODEC/encodec/modules/seanet.py +++ b/egs/libritts/CODEC/encodec/modules/seanet.py @@ -161,7 +161,7 @@ class SEANetEncoder(nn.Module): SEANetResnetBlock( mult * n_filters, kernel_sizes=[residual_kernel_size, 1], - dilations=[dilation_base ** j, 1], + dilations=[dilation_base**j, 1], norm=norm, norm_params=norm_params, activation=activation, @@ -311,7 +311,7 @@ class SEANetDecoder(nn.Module): SEANetResnetBlock( mult * n_filters // 2, kernel_sizes=[residual_kernel_size, 1], - dilations=[dilation_base ** j, 1], + dilations=[dilation_base**j, 1], activation=activation, activation_params=activation_params, norm=norm, diff --git a/egs/libritts/CODEC/encodec/quantization/ac.py b/egs/libritts/CODEC/encodec/quantization/ac.py index 99b62d14b..8d8a770ca 100644 --- a/egs/libritts/CODEC/encodec/quantization/ac.py +++ b/egs/libritts/CODEC/encodec/quantization/ac.py @@ -41,7 +41,7 @@ def build_stable_quantized_cdf( if roundoff: pdf = (pdf / roundoff).floor() * roundoff # interpolate with uniform distribution to achieve desired minimum probability. - total_range = 2 ** total_range_bits + total_range = 2**total_range_bits cardinality = len(pdf) alpha = min_range * cardinality / total_range assert alpha <= 1, "you must reduce min_range" @@ -51,7 +51,7 @@ def build_stable_quantized_cdf( if min_range < 2: raise ValueError("min_range must be at least 2.") if check: - assert quantized_cdf[-1] <= 2 ** total_range_bits, quantized_cdf[-1] + assert quantized_cdf[-1] <= 2**total_range_bits, quantized_cdf[-1] if ( (quantized_cdf[1:] - quantized_cdf[:-1]) < min_range ).any() or quantized_cdf[0] < min_range: @@ -142,7 +142,7 @@ class ArithmeticCoder: quantized_cdf (Tensor): use `build_stable_quantized_cdf` to build this from your pdf estimate. """ - while self.delta < 2 ** self.total_range_bits: + while self.delta < 2**self.total_range_bits: self.low *= 2 self.high = self.high * 2 + 1 self.max_bit += 1 @@ -150,10 +150,10 @@ class ArithmeticCoder: range_low = 0 if symbol == 0 else quantized_cdf[symbol - 1].item() range_high = quantized_cdf[symbol].item() - 1 effective_low = int( - math.ceil(range_low * (self.delta / (2 ** self.total_range_bits))) + math.ceil(range_low * (self.delta / (2**self.total_range_bits))) ) effective_high = int( - math.floor(range_high * (self.delta / (2 ** self.total_range_bits))) + math.floor(range_high * (self.delta / (2**self.total_range_bits))) ) assert self.low <= self.high self.high = self.low + effective_high @@ -238,7 +238,7 @@ class ArithmeticDecoder: to build this from your pdf estimate. This must be **exatly** the same cdf as the one used at encoding time. """ - while self.delta < 2 ** self.total_range_bits: + while self.delta < 2**self.total_range_bits: bit = self.unpacker.pull() if bit is None: return None @@ -255,10 +255,10 @@ class ArithmeticDecoder: range_low = quantized_cdf[mid - 1].item() if mid > 0 else 0 range_high = quantized_cdf[mid].item() - 1 effective_low = int( - math.ceil(range_low * (self.delta / (2 ** self.total_range_bits))) + math.ceil(range_low * (self.delta / (2**self.total_range_bits))) ) effective_high = int( - math.floor(range_high * (self.delta / (2 ** self.total_range_bits))) + math.floor(range_high * (self.delta / (2**self.total_range_bits))) ) low = effective_low + self.low high = effective_high + self.low diff --git a/egs/libritts/CODEC/encodec/quantization/core_vq.py b/egs/libritts/CODEC/encodec/quantization/core_vq.py index 0b342f2b0..4719e20f7 100644 --- a/egs/libritts/CODEC/encodec/quantization/core_vq.py +++ b/egs/libritts/CODEC/encodec/quantization/core_vq.py @@ -76,7 +76,7 @@ def kmeans(samples, num_clusters: int, num_iters: int = 10): for _ in range(num_iters): diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d") - dists = -(diffs ** 2).sum(dim=-1) + dists = -(diffs**2).sum(dim=-1) buckets = dists.max(dim=-1).indices bins = torch.bincount(buckets, minlength=num_clusters)