mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-09 14:05:33 +00:00
Finish training code.
This commit is contained in:
parent
e978948a26
commit
018d03cd08
@ -133,6 +133,15 @@ class AsrDataModule:
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available. Used only in dev/test CutSet",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
@ -240,3 +249,56 @@ class AsrDataModule:
|
||||
persistent_workers=False,
|
||||
)
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@ -34,6 +34,8 @@ class Transducer(nn.Module):
|
||||
encoder: EncoderInterface,
|
||||
decoder: nn.Module,
|
||||
joiner: nn.Module,
|
||||
decoder_giga: nn.Module,
|
||||
joiner_giga: nn.Module,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -50,20 +52,30 @@ class Transducer(nn.Module):
|
||||
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||
output shape is (N, T, U, C). Note that its output contains
|
||||
unnormalized probs, i.e., not processed by log-softmax.
|
||||
decoder_giga:
|
||||
The decoder for the GigaSpeech dataset.
|
||||
joiner_giga:
|
||||
The joiner for the GigaSpeech dataset.
|
||||
"""
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
assert hasattr(decoder_giga, "blank_id")
|
||||
|
||||
self.encoder = encoder
|
||||
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
self.decoder_giga = decoder_giga
|
||||
self.joiner_giga = joiner_giga
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
libri: bool = True,
|
||||
modified_transducer_prob: float = 0.0,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
@ -76,6 +88,9 @@ class Transducer(nn.Module):
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
libri:
|
||||
True to use the decoder and joiner for the LibriSpeech dataset.
|
||||
False to use the decoder and joiner for the GigaSpeech dataset.
|
||||
modified_transducer_prob:
|
||||
The probability to use modified transducer loss.
|
||||
Returns:
|
||||
@ -100,10 +115,17 @@ class Transducer(nn.Module):
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
sos_y_padded = sos_y_padded.to(torch.int64)
|
||||
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
if libri:
|
||||
decoder = self.decoder
|
||||
joiner = self.joiner
|
||||
else:
|
||||
decoder = self.decoder_giga
|
||||
joiner = self.joiner_giga
|
||||
|
||||
decoder_out = decoder(sos_y_padded)
|
||||
|
||||
# +1 here since a blank is prepended to each utterance.
|
||||
logits = self.joiner(
|
||||
logits = joiner(
|
||||
encoder_out=encoder_out,
|
||||
decoder_out=decoder_out,
|
||||
encoder_out_len=x_lens,
|
||||
|
||||
@ -21,11 +21,11 @@ Usage:
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer_stateless/train.py \
|
||||
./transducer_stateless_multi_datasets/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer_stateless/exp \
|
||||
--exp-dir transducer_stateless_multi_datasets/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--lr-factor 2.5
|
||||
@ -34,6 +34,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import random
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
@ -43,12 +44,15 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from asr_datamodule import AsrDataModule
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from gigaspeech import GigaSpeech
|
||||
from joiner import Joiner
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.utils import fix_random_seed
|
||||
from librispeech import LibriSpeech
|
||||
from model import Transducer
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
@ -82,6 +86,14 @@ def get_parser():
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. "
|
||||
"Otherwise, use 100h subset.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
@ -109,7 +121,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/exp",
|
||||
default="transducer_stateless_multi_datasets/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
@ -259,13 +271,19 @@ def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
decoder_giga = get_decoder_model(params)
|
||||
joiner_giga = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
decoder_giga=decoder_giga,
|
||||
joiner_giga=joiner_giga,
|
||||
)
|
||||
return model
|
||||
|
||||
@ -357,6 +375,17 @@ def save_checkpoint(
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def is_libri(c: Cut) -> bool:
|
||||
"""Return True if this cut is from the LibriSpeech dataset.
|
||||
|
||||
Note:
|
||||
During data preparation, we set the custom field in
|
||||
the supervision segment of GigaSpeech to dict(origin='giga')
|
||||
See ../local/preprocess_gigaspeech.py.
|
||||
"""
|
||||
return c.supervisions[0].custom is None
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
@ -389,6 +418,8 @@ def compute_loss(
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
libri = is_libri(supervisions["cut"][0])
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = sp.encode(texts, out_type=int)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
@ -398,6 +429,7 @@ def compute_loss(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
y=y,
|
||||
libri=libri,
|
||||
modified_transducer_prob=params.modified_transducer_prob,
|
||||
)
|
||||
|
||||
@ -452,7 +484,9 @@ def train_one_epoch(
|
||||
optimizer: torch.optim.Optimizer,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
giga_train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
rng: random.Random,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
@ -473,6 +507,8 @@ def train_one_epoch(
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
rng:
|
||||
For select which dataset to use.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
@ -482,7 +518,27 @@ def train_one_epoch(
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
# index 0: for LibriSpeech
|
||||
# index 1: for GigaSpeech
|
||||
# This sets the probabilities for choosing which datasets
|
||||
dl_weights = [0.8, 0.2]
|
||||
|
||||
iter_libri = iter(train_dl)
|
||||
iter_giga = iter(giga_train_dl)
|
||||
|
||||
batch_idx = 0
|
||||
|
||||
while True:
|
||||
idx = rng.choices((0, 1), weights=dl_weights, k=1)[0]
|
||||
dl = iter_libri if idx == 0 else iter_giga
|
||||
|
||||
try:
|
||||
batch = next(dl)
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
batch_idx += 1
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -544,6 +600,25 @@ def train_one_epoch(
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
|
||||
num_in_total = len(cuts)
|
||||
cuts = cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
num_left = len(cuts)
|
||||
num_removed = num_in_total - num_left
|
||||
removed_percent = num_removed / num_in_total * 100
|
||||
|
||||
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||
logging.info(f"After removing short and long utterances: {num_left}")
|
||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||
|
||||
return cuts
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
@ -562,7 +637,9 @@ def run(rank, world_size, args):
|
||||
params.valid_interval = 800
|
||||
params.warm_step = 8000
|
||||
|
||||
fix_random_seed(42)
|
||||
seed = 42
|
||||
fix_random_seed(seed)
|
||||
rng = random.Random(seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
@ -599,7 +676,7 @@ def run(rank, world_size, args):
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||
model.device = device
|
||||
|
||||
optimizer = Noam(
|
||||
@ -613,45 +690,66 @@ def run(rank, world_size, args):
|
||||
logging.info("Loading optimizer state dict")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
train_cuts = filter_short_and_long_utterances(train_cuts)
|
||||
|
||||
num_in_total = len(train_cuts)
|
||||
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
|
||||
# XL 10k hours
|
||||
# L 2.5k hours
|
||||
# M 1k hours
|
||||
# S 250 hours
|
||||
# XS 10 hours
|
||||
# DEV 12 hours
|
||||
# Test 40 hours
|
||||
# train_giga_cuts = gigaspeech.train_M_cuts()
|
||||
train_giga_cuts = gigaspeech.train_S_cuts()
|
||||
train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
if args.enable_musan:
|
||||
cuts_musan = load_manifest(
|
||||
Path(args.manifest_dir) / "cuts_musan.json.gz"
|
||||
)
|
||||
else:
|
||||
cuts_musan = None
|
||||
|
||||
num_left = len(train_cuts)
|
||||
num_removed = num_in_total - num_left
|
||||
removed_percent = num_removed / num_in_total * 100
|
||||
asr_datamodule = AsrDataModule(args)
|
||||
|
||||
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||
logging.info(f"After removing short and long utterances: {num_left}")
|
||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||
train_dl = asr_datamodule.train_dataloaders(
|
||||
train_cuts,
|
||||
dynamic_bucketing=False,
|
||||
on_the_fly_feats=False,
|
||||
cuts_musan=cuts_musan,
|
||||
)
|
||||
|
||||
train_dl = librispeech.train_dataloaders(train_cuts)
|
||||
giga_train_dl = asr_datamodule.train_dataloaders(
|
||||
train_giga_cuts,
|
||||
dynamic_bucketing=True,
|
||||
on_the_fly_feats=True,
|
||||
cuts_musan=cuts_musan,
|
||||
)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts()
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
valid_dl = asr_datamodule.valid_dataloaders(valid_cuts)
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
params=params,
|
||||
)
|
||||
for dl in [train_dl, giga_train_dl]:
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
giga_train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
@ -671,7 +769,9 @@ def run(rank, world_size, args):
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
train_dl=train_dl,
|
||||
giga_train_dl=giga_train_dl,
|
||||
valid_dl=valid_dl,
|
||||
rng=rng,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
@ -731,7 +831,7 @@ def scan_pessimistic_batches_for_oom(
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user