diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 9cc6081e9..f6c9c6fc2 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 76def32dc..2bc421706 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -40,12 +40,7 @@ logger = logging.getLogger().setLevel(logging.INFO) class TransformerEncoderAdapter(TransformerEncoder): def __init__(self, args: Wav2Vec2Config): super().__init__(args) - self.adapters = ResidualAdapterModule(proj_dim=512) - - for p in self.adapters.parameters(): - p.data /= 10. - #p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) - #p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/20.) + self.lora = LoRAModule() def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(