Merge d941c516c00d260875945064edc80eb8a00add81 into 3199058194a48d45aeee740f2aa9bdbef0bec29d

This commit is contained in:
marcoyang1998 2023-09-11 18:53:54 +08:00 committed by GitHub
commit 00fefa2b22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 799 additions and 424 deletions

View File

@ -25,6 +25,7 @@
stage=0
stop_stage=4
. shared/parse_options.sh || exit 1
# Set the GPUs available.
# This script requires at least one GPU.
@ -32,7 +33,7 @@ stop_stage=4
# even you only have ONE GPU. It needed by CodebookIndexExtractor to determine numbert of jobs to extract codebook indexes parallelly.
# Suppose only one GPU exists:
# export CUDA_VISIBLE_DEVICES="0"
export CUDA_VISIBLE_DEVICES="0"
#
# Suppose GPU 2,3,4,5 are available.
# export CUDA_VISIBLE_DEVICES="0,1,2,3"
@ -154,27 +155,35 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
mkdir -p codebook_dir
codebook_download_dir=$exp_dir/download_codebook
if [ -d $codebook_download_dir ]; then
log "$codebook_download_dir exists, you should remove it first."
exit 1
log "$codebook_download_dir exists, skip downloading it."
else
log "Downloading extracted codebook indexes to $codebook_download_dir"
# Make sure you have git-lfs installed (https://git-lfs.github.com)
# The codebook indexes are generated using lhotse 1.11.0, to avoid
# potential issues, we recommend you to use lhotse version >= 1.11.0
lhotse_version=$(python3 -c "import lhotse; from packaging import version; print(version.parse(lhotse.version.__version__)>=version.parse('1.11.0'))")
if [ "$lhotse_version" == "False" ]; then
log "Expecting lhotse >= 1.11.0. This may lead to potential ID mismatch."
fi
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/marcoyang/pruned_transducer_stateless6_hubert_xtralarge_ll60k_finetune_ls960 $codebook_download_dir
pushd $codebook_download_dir
if [ "$full_libri" == "False" ]; then
log "Only download the train-clean-100 subset"
git lfs pull --include "*clean-100*"
else
log "Download the full training set"
git lfs fetch --all
fi
popd
fi
log "Downloading extracted codebook indexes to $codebook_download_dir"
# Make sure you have git-lfs installed (https://git-lfs.github.com)
# The codebook indexes are generated using lhotse 1.11.0, to avoid
# potential issues, we recommend you to use lhotse version >= 1.11.0
lhotse_version=$(python3 -c "import lhotse; from packaging import version; print(version.parse(lhotse.version.__version__)>=version.parse('1.11.0'))")
if [ "$lhotse_version" == "False" ]; then
log "Expecting lhotse >= 1.11.0. This may lead to potential ID mismatch."
fi
git lfs install
git clone https://huggingface.co/marcoyang/pruned_transducer_stateless6_hubert_xtralarge_ll60k_finetune_ls960 $codebook_download_dir
vq_fbank=data/vq_fbank_layer${embedding_layer}_cb${num_codebooks}/
mkdir -p $vq_fbank
mv $codebook_download_dir/*.jsonl.gz $vq_fbank
mkdir -p $codebook_dir/splits4
mv $codebook_download_dir/*.h5 $codebook_dir/splits4/
log "Remove $codebook_download_dir"
rm -rf $codebook_download_dir
# log "Remove $codebook_download_dir"
# rm -rf $codebook_download_dir
fi
./pruned_transducer_stateless6/extract_codebook_index.py \

View File

@ -27,8 +27,6 @@ from torch import nn
from icefall import ContextGraph, ContextState, NgramLm, NgramLmStateCost
from icefall.decode import Nbest, one_best_decoding
from icefall.lm_wrapper import LmScorer
from icefall.rnn_lm.model import RnnLmModel
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import (
DecodingResults,
add_eos,

View File

@ -16,15 +16,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
from typing import List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from multi_quantization.prediction import JointCodebookLoss
from scaling import ScaledLinear
from icefall.utils import add_sos, make_pad_mask
from scaling import ScaledLinear
class AsrModel(nn.Module):
@ -39,12 +40,15 @@ class AsrModel(nn.Module):
vocab_size: int = 500,
use_transducer: bool = True,
use_ctc: bool = False,
num_codebooks: int = 8,
cb_input_dim: int = 384,
):
"""A joint CTC & Transducer ASR model.
- Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (http://imagine.enpc.fr/~obozinsg/teaching/mva_gm/papers/ctc.pdf)
- Sequence Transduction with Recurrent Neural Networks (https://arxiv.org/pdf/1211.3711.pdf)
- Pruned RNN-T for fast, memory-efficient ASR training (https://arxiv.org/pdf/2206.13236.pdf)
- Potentially with MVQ knowledge distillation (https://arxiv.org/abs/2211.00508)
Args:
encoder_embed:
@ -70,6 +74,10 @@ class AsrModel(nn.Module):
Whether use transducer head. Default: True.
use_ctc:
Whether use CTC head. Default: False.
num_codebooks:
Greater than 0 if we want to do MVQ knowledge distillation.
cb_input_dim:
The input dimension to the codebook loss module.
"""
super().__init__()
@ -111,6 +119,12 @@ class AsrModel(nn.Module):
nn.LogSoftmax(dim=-1),
)
if num_codebooks > 0:
self.codebook_loss_net = JointCodebookLoss(
predictor_channels=cb_input_dim,
num_codebooks=num_codebooks,
)
def forward_encoder(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
@ -127,6 +141,8 @@ class AsrModel(nn.Module):
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
saved_embeddings:
The embeddings from the middle layers
"""
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
x, x_lens = self.encoder_embed(x, x_lens)
@ -135,12 +151,14 @@ class AsrModel(nn.Module):
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out, encoder_out_lens, middle_out = self.encoder(
x, x_lens, src_key_padding_mask
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
return encoder_out, encoder_out_lens
return encoder_out, encoder_out_lens, middle_out
def forward_ctc(
self,
@ -180,6 +198,7 @@ class AsrModel(nn.Module):
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
codebook_indexes: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute Transducer loss.
Args:
@ -286,6 +305,7 @@ class AsrModel(nn.Module):
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
codebook_indexes: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
@ -306,9 +326,12 @@ class AsrModel(nn.Module):
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
codebook_indexes:
The codebook indexes to be predicted. Only used when doing knowledge
distillation with MVQ
Returns:
Return the transducer losses and CTC loss,
in form of (simple_loss, pruned_loss, ctc_loss)
Return the transducer losses and CTC loss, and potentially codebook loss
in form of (simple_loss, pruned_loss, ctc_loss, codebook_loss)
Note:
Regarding am_scale & lm_scale, it will make the loss-function one of
@ -323,7 +346,7 @@ class AsrModel(nn.Module):
assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0)
# Compute encoder outputs
encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens)
encoder_out, encoder_out_lens, middle_out = self.forward_encoder(x, x_lens)
row_splits = y.shape.row_splits(1)
y_lens = row_splits[1:] - row_splits[:-1]
@ -355,4 +378,85 @@ class AsrModel(nn.Module):
else:
ctc_loss = torch.empty(0)
return simple_loss, pruned_loss, ctc_loss
if self.training and hasattr(self, "codebook_loss_net"):
assert codebook_indexes is not None
codebook_loss = self.forward_codebook(
middle_out=middle_out,
codebook_indexes=codebook_indexes,
)
else:
codebook_loss = torch.empty(0)
return simple_loss, pruned_loss, ctc_loss, codebook_loss
def forward_codebook(
self,
middle_out: List[torch.Tensor],
codebook_indexes: torch.Tensor,
) -> torch.Tensor:
"""Calculate the codebook loss for the model (knowledge distillation)
Args:
middle_out (List[torch.Tensor]):
The embeddings extracted from the middle layer of the zipformer encoder
codebook_indexes (torch.Tensor):
The encoded codebook indexes for knowledge distillation
Returns:
The codebook loss value
"""
middle_layer_output = middle_out[
0
] # currently only support using output of one layer, (N,T,C)
len_CI = codebook_indexes.size(1)
len_mid_layer = middle_layer_output.size(1)
ratio = round(len_CI / len_mid_layer)
if ratio == 1: # Having the same frame rate
assert len_CI > len_mid_layer, (len_CI, len_mid_layer)
codebook_indexes = codebook_indexes[:, :len_mid_layer, :]
assert codebook_indexes.size(1) == middle_layer_output.size(1)
codebook_loss = self.codebook_loss_net(
middle_layer_output, codebook_indexes
)
elif ratio == 2:
codebook_indexes = self.concat_successive_codebook_indexes(
middle_layer_output, codebook_indexes
)
codebook_loss = self.codebook_loss_net(
middle_layer_output, codebook_indexes
)
return codebook_loss
@staticmethod
def concat_successive_codebook_indexes(middle_layer_output, codebook_indexes):
# Output rate of hubert is 50 frames per second,
# while that of current encoder is 25.
# Following code handling two issues:
# 1.
# Roughly speaking, to generate another frame output,
# hubert needes extra two frames,
# while current encoder needs extra four frames.
# Suppose there are only extra three frames provided,
# hubert will generate another frame while current encoder does nothing.
# 2.
# codebook loss is a frame-wise loss, to enalbe 25 frames studnet output
# learns from 50 frames teacher output, two successive frames of teacher model
# output is concatenated together.
t_expected = middle_layer_output.shape[1]
N, T, C = codebook_indexes.shape
assert T >= t_expected, (T, t_expected)
# Handling issue 1.
if T >= t_expected * 2:
codebook_indexes = codebook_indexes[:, : t_expected * 2, :]
if (
T / t_expected < 1.1
): # To be changed, dirty hack to jump out of this function
codebook_indexes = codebook_indexes[:, :t_expected, :]
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
return codebook_indexes
# Handling issue 2.
codebook_indexes = codebook_indexes.reshape(N, t_expected, C * 2)
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
return codebook_indexes

View File

@ -68,7 +68,8 @@ import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from decoder import Decoder
from joiner import Joiner
from lhotse.cut import Cut
from lhotse.cut import Cut, MonoCut
from lhotse.dataset.collation import collate_custom_field
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from model import AsrModel
@ -403,6 +404,34 @@ def get_parser():
help="Scale for CTC loss.",
)
parser.add_argument(
"--enable-distillation",
type=str2bool,
default=True,
help="Whether to eanble distillation.",
)
parser.add_argument(
"--codebook-loss-scale",
type=float,
default=0.1,
help="The scale of codebook loss.",
)
parser.add_argument(
"--num-codebooks",
type=int,
default=16,
help="Number of codebooks used for the extracted CI",
)
parser.add_argument(
"--distillation-layer",
type=int,
default=4,
help="Where to perform MVQ-KD",
)
parser.add_argument(
"--seed",
type=int,
@ -579,6 +608,9 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
causal=params.causal,
chunk_size=_to_int_tuple(params.chunk_size),
left_context_frames=_to_int_tuple(params.left_context_frames),
middle_output_layer=params.distillation_layer
if params.enable_distillation
else None,
)
return encoder
@ -604,11 +636,11 @@ def get_joiner_model(params: AttributeDict) -> nn.Module:
def get_model(params: AttributeDict) -> nn.Module:
assert (
params.use_transducer or params.use_ctc
), (f"At least one of them should be True, "
assert params.use_transducer or params.use_ctc, (
f"At least one of them should be True, "
f"but got params.use_transducer={params.use_transducer}, "
f"params.use_ctc={params.use_ctc}")
f"params.use_ctc={params.use_ctc}"
)
encoder_embed = get_encoder_embed(params)
encoder = get_encoder_model(params)
@ -630,6 +662,8 @@ def get_model(params: AttributeDict) -> nn.Module:
vocab_size=params.vocab_size,
use_transducer=params.use_transducer,
use_ctc=params.use_ctc,
num_codebooks=params.num_codebooks if params.enable_distillation else 0,
cb_input_dim=_to_int_tuple(params.encoder_dim)[params.distillation_layer],
)
return model
@ -750,6 +784,16 @@ def save_checkpoint(
copyfile(src=filename, dst=best_valid_filename)
def extract_codebook_indexes(batch: Dict) -> Tuple[Tensor, Tensor]:
cuts = batch["supervisions"]["cut"]
# -100 is identical to ignore_value in CE loss computation.
cuts_pre_mixed = [c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts]
codebook_indexes, codebook_indexes_lens = collate_custom_field(
cuts_pre_mixed, "codebook_indexes", pad_value=-100
)
return codebook_indexes, codebook_indexes_lens
def compute_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
@ -791,14 +835,21 @@ def compute_loss(
y = sp.encode(texts, out_type=int)
y = k2.RaggedTensor(y)
if is_training and params.enable_distillation:
codebook_indexes, _ = extract_codebook_indexes(batch)
codebook_indexes = codebook_indexes.to(device)
else:
codebook_indexes = None
with torch.set_grad_enabled(is_training):
simple_loss, pruned_loss, ctc_loss = model(
simple_loss, pruned_loss, ctc_loss, codebook_loss = model(
x=feature,
x_lens=feature_lens,
y=y,
prune_range=params.prune_range,
am_scale=params.am_scale,
lm_scale=params.lm_scale,
codebook_indexes=codebook_indexes,
)
loss = 0.0
@ -808,21 +859,23 @@ def compute_loss(
# take down the scale on the simple loss from 1.0 at the start
# to params.simple_loss scale by warm_step.
simple_loss_scale = (
s if batch_idx_train >= warm_step
s
if batch_idx_train >= warm_step
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
)
pruned_loss_scale = (
1.0 if batch_idx_train >= warm_step
1.0
if batch_idx_train >= warm_step
else 0.1 + 0.9 * (batch_idx_train / warm_step)
)
loss += (
simple_loss_scale * simple_loss
+ pruned_loss_scale * pruned_loss
)
loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
if params.use_ctc:
loss += params.ctc_loss_scale * ctc_loss
if is_training and params.enable_distillation:
loss += params.codebook_loss_scale * codebook_loss
assert loss.requires_grad == is_training
info = MetricsTracker()
@ -837,6 +890,8 @@ def compute_loss(
info["pruned_loss"] = pruned_loss.detach().cpu().item()
if params.use_ctc:
info["ctc_loss"] = ctc_loss.detach().cpu().item()
if is_training and params.enable_distillation:
info["codebook_loss"] = codebook_loss.detach().cpu().item()
return loss, info
@ -1105,6 +1160,13 @@ def run(rank, world_size, args):
else:
tb_writer = None
# Note: it's better to set --spec-aug-time-warpi-factor=-1
# when doing distillation with vq.
if params.enable_distillation:
assert (
args.spec_aug_time_warp_factor < 1
), "Specaug should be disabled during distillation"
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", rank)
@ -1234,14 +1296,14 @@ def run(rank, world_size, args):
valid_cuts += librispeech.dev_other_cuts()
valid_dl = librispeech.valid_dataloaders(valid_cuts)
if not params.print_diagnostics:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,
optimizer=optimizer,
sp=sp,
params=params,
)
# if not params.print_diagnostics:
# scan_pessimistic_batches_for_oom(
# model=model,
# train_dl=train_dl,
# optimizer=optimizer,
# sp=sp,
# params=params,
# )
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:

File diff suppressed because it is too large Load Diff