From 00e2f0ade8840299d405908667f13f4107178fb6 Mon Sep 17 00:00:00 2001
From: "LIyong.Guo" <839019390@qq.com>
Date: Wed, 24 Nov 2021 19:35:18 +0800
Subject: [PATCH] Draft streaming decoding (#89)
* reusable parts from conformer_ctc
* streaming conformer code
* a trained model
---
.../ASR/streaming_conformer_ctc/README.md | 90 ++
.../streaming_conformer_ctc/asr_datamodule.py | 1 +
.../ASR/streaming_conformer_ctc/conformer.py | 1355 +++++++++++++++++
.../label_smoothing.py | 1 +
.../streaming_decode.py | 521 +++++++
.../streaming_conformer_ctc/subsampling.py | 1 +
.../ASR/streaming_conformer_ctc/train.py | 745 +++++++++
.../streaming_conformer_ctc/transformer.py | 966 ++++++++++++
8 files changed, 3680 insertions(+)
create mode 100644 egs/librispeech/ASR/streaming_conformer_ctc/README.md
create mode 120000 egs/librispeech/ASR/streaming_conformer_ctc/asr_datamodule.py
create mode 100644 egs/librispeech/ASR/streaming_conformer_ctc/conformer.py
create mode 120000 egs/librispeech/ASR/streaming_conformer_ctc/label_smoothing.py
create mode 100755 egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py
create mode 120000 egs/librispeech/ASR/streaming_conformer_ctc/subsampling.py
create mode 100755 egs/librispeech/ASR/streaming_conformer_ctc/train.py
create mode 100644 egs/librispeech/ASR/streaming_conformer_ctc/transformer.py
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/README.md b/egs/librispeech/ASR/streaming_conformer_ctc/README.md
new file mode 100644
index 000000000..01be7090b
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/README.md
@@ -0,0 +1,90 @@
+## Train and Decode
+Commands of data preparation/train/decode steps are almost the same with
+../conformer_ctc experiment except some options.
+
+Please read the code and understand following new added options before running this experiment:
+
+ For data preparation:
+
+ Nothing new.
+
+ For streaming_conformer_ctc/train.py:
+
+ --dynamic-chunk-training
+ --short-chunk-proportion
+
+ For streaming_conformer_ctc/streaming_decode.py:
+
+ --chunk-size
+ --tailing-num-frames
+ --simulate-streaming
+
+## Performence and a trained model.
+
+The latest results with this streaming code is shown in following table:
+
+chunk size | wer on test-clean | wer on test-other
+-- | -- | --
+full | 3.53 | 8.52
+40(1.96s) | 3.78 | 9.38
+32(1.28s) | 3.82 | 9.44
+24(0.96s) | 3.95 | 9.76
+16(0.64s) | 4.06 | 9.98
+8(0.32s) | 4.30 | 10.55
+4(0.16s) | 5.88 | 12.01
+
+
+A trained model is also provided.
+By run
+```
+git clone https://huggingface.co/GuoLiyong/streaming_conformer
+
+# You may want to manually check md5sum values of downloaded files
+# 8e633bc1de37f5ae57a2694ceee32a93 trained_streaming_conformer.pt
+# 4c0aeefe26c784ec64873cc9b95420f1 L.pt
+# d1f91d81005fb8ce4d65953a4a984ee7 Linv.pt
+# e1c1902feb7b9fc69cd8d26e663c2608 bpe.model
+# 8617e67159b0ff9118baa54f04db24cc tokens.txt
+# 72b075ab5e851005cd854e666c82c3bb words.txt
+```
+
+If there is any different md5sum values, please run
+```
+cd streaming_models
+git lfs pull
+```
+And check md5sum values again.
+
+Finally, following files will be downloaded:
+
+streaming_models/
+|-- lang_bpe
+| |-- L.pt
+| |-- Linv.pt
+| |-- bpe.model
+| |-- tokens.txt
+| `-- words.txt
+`-- trained_streaming_conformer.pt
+
+
+
+And run commands you will get the same results of previous table:
+```
+trained_models=/path/to/downloaded/streaming_models/
+for chunk_size in 4 8 16 24 36 40 -1; do
+ ./streaming_conformer_ctc/streaming_decode.py \
+ --chunk-size=${chunk_size} \
+ --trained-dir=${trained_models}
+done
+```
+Results of following command is indentical to previous one,
+but model consumes features chunk_by_chunk, i.e. a streaming way.
+```
+trained_models=/path/to/downloaded/streaming_models/
+for chunk_size in 4 8 16 24 36 40 -1; do
+ ./streaming_conformer_ctc/streaming_decode.py \
+ --simulate-streaming=True \
+ --chunk-size=${chunk_size} \
+ --trained-dir=${trained_models}
+done
+```
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/asr_datamodule.py b/egs/librispeech/ASR/streaming_conformer_ctc/asr_datamodule.py
new file mode 120000
index 000000000..a73848de9
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/asr_datamodule.py
@@ -0,0 +1 @@
+../conformer_ctc/asr_datamodule.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py b/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py
new file mode 100644
index 000000000..33f8e2e15
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/conformer.py
@@ -0,0 +1,1355 @@
+#!/usr/bin/env python3
+# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import math
+import warnings
+from typing import Optional, Tuple
+
+import torch
+from torch import Tensor, nn
+from transformer import Supervisions, Transformer, encoder_padding_mask
+
+
+# from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/mask.py#L42
+def subsequent_chunk_mask(
+ size: int,
+ chunk_size: int,
+ num_left_chunks: int = -1,
+ device: torch.device = torch.device("cpu"),
+) -> torch.Tensor:
+ """Create mask for subsequent steps (size, size) with chunk size,
+ this is for streaming encoder
+ Args:
+ size (int): size of mask
+ chunk_size (int): size of chunk
+ num_left_chunks (int): number of left chunks
+ <0: use full chunk
+ >=0: use num_left_chunks
+ device (torch.device): "cpu" or "cuda" or torch.Tensor.device
+ Returns:
+ torch.Tensor: mask
+ Examples:
+ >>> subsequent_chunk_mask(4, 2)
+ [[1, 1, 0, 0],
+ [1, 1, 0, 0],
+ [1, 1, 1, 1],
+ [1, 1, 1, 1]]
+ """
+ ret = torch.zeros(size, size, device=device, dtype=torch.bool)
+ for i in range(size):
+ if num_left_chunks < 0:
+ start = 0
+ else:
+ start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
+ ending = min((i // chunk_size + 1) * chunk_size, size)
+ ret[i, start:ending] = True
+ return ret
+
+
+class Conformer(Transformer):
+ """
+ Args:
+ num_features (int): Number of input features
+ num_classes (int): Number of output classes
+ subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
+ d_model (int): attention dimension
+ nhead (int): number of head
+ dim_feedforward (int): feedforward dimention
+ num_encoder_layers (int): number of encoder layers
+ num_decoder_layers (int): number of decoder layers
+ dropout (float): dropout rate
+ cnn_module_kernel (int): Kernel size of convolution module
+ normalize_before (bool): whether to use layer_norm before the first block.
+ vgg_frontend (bool): whether to use vgg frontend.
+ """
+
+ def __init__(
+ self,
+ num_features: int,
+ num_classes: int,
+ subsampling_factor: int = 4,
+ d_model: int = 256,
+ nhead: int = 4,
+ dim_feedforward: int = 2048,
+ num_encoder_layers: int = 12,
+ num_decoder_layers: int = 6,
+ dropout: float = 0.1,
+ cnn_module_kernel: int = 31,
+ normalize_before: bool = True,
+ vgg_frontend: bool = False,
+ use_feat_batchnorm: bool = False,
+ causal: bool = False,
+ ) -> None:
+ super(Conformer, self).__init__(
+ num_features=num_features,
+ num_classes=num_classes,
+ subsampling_factor=subsampling_factor,
+ d_model=d_model,
+ nhead=nhead,
+ dim_feedforward=dim_feedforward,
+ num_encoder_layers=num_encoder_layers,
+ num_decoder_layers=num_decoder_layers,
+ dropout=dropout,
+ normalize_before=normalize_before,
+ vgg_frontend=vgg_frontend,
+ use_feat_batchnorm=use_feat_batchnorm,
+ )
+
+ self.encoder_pos = RelPositionalEncoding(d_model, dropout)
+
+ encoder_layer = ConformerEncoderLayer(
+ d_model,
+ nhead,
+ dim_feedforward,
+ dropout,
+ cnn_module_kernel,
+ normalize_before,
+ causal,
+ )
+ self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
+ self.normalize_before = normalize_before
+ if self.normalize_before:
+ self.after_norm = nn.LayerNorm(d_model)
+ else:
+ # Note: TorchScript detects that self.after_norm could be used inside forward()
+ # and throws an error without this change.
+ self.after_norm = identity
+
+ def run_encoder(
+ self,
+ x: Tensor,
+ supervisions: Optional[Supervisions] = None,
+ dynamic_chunk_training: bool = False,
+ short_chunk_proportion: float = 0.5,
+ chunk_size: int = -1,
+ simulate_streaming: bool = False,
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ """
+ Args:
+ x:
+ The model input. Its shape is (N, T, C).
+ supervisions:
+ Supervision in lhotse format.
+ See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
+ CAUTION: It contains length information, i.e., start and number of
+ frames, before subsampling
+ It is read directly from the batch, without any sorting. It is used
+ to compute encoder padding mask, which is used as memory key padding
+ mask for the decoder.
+ dynamic_chunk_training:
+ For training only.
+ IF True, train with dynamic right context for some batches
+ sampled with a distribution
+ if False, train with full right context all the time.
+ short_chunk_proportion:
+ For training only.
+ Proportion of samples that will be trained with dynamic chunk.
+ chunk_size:
+ For eval only.
+ right context when evaluating test utts.
+ -1 means all right context.
+ simulate_streaming=False,
+ For eval only.
+ If true, the feature will be feeded into the model chunk by chunk.
+ If false, the whole utts if feeded into the model together i.e. the
+ model only foward once.
+
+
+ Returns:
+ Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
+ Tensor: Mask tensor of dimension (batch_size, input_length)
+ """
+ if self.encoder.training:
+ return self.train_run_encoder(
+ x, supervisions, dynamic_chunk_training, short_chunk_proportion
+ )
+ else:
+ return self.eval_run_encoder(
+ x, supervisions, chunk_size, simulate_streaming
+ )
+
+ def train_run_encoder(
+ self,
+ x: Tensor,
+ supervisions: Optional[Supervisions] = None,
+ dynamic_chunk_training: bool = False,
+ short_chunk_threshold: float = 0.5,
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ """
+ Args:
+ x:
+ The model input. Its shape is (N, T, C).
+ supervisions:
+ Supervision in lhotse format.
+ See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
+ CAUTION: It contains length information, i.e., start and number of
+ frames, before subsampling
+ It is read directly from the batch, without any sorting. It is used
+ to compute encoder padding mask, which is used as memory key padding
+ mask for the decoder.
+ dynamic_chunk_training:
+ IF True, train with dynamic right context for some batches
+ sampled with a distribution
+ if False, train with full right context all the time.
+ short_chunk_proportion:
+ Proportion of samples that will be trained with dynamic chunk.
+ """
+ x = self.encoder_embed(x)
+ x, pos_emb = self.encoder_pos(x)
+ x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
+ src_key_padding_mask = encoder_padding_mask(x.size(0), supervisions)
+ if src_key_padding_mask is not None:
+ src_key_padding_mask = src_key_padding_mask.to(x.device)
+
+ if dynamic_chunk_training:
+ max_len = x.size(0)
+ chunk_size = torch.randint(1, max_len, (1,)).item()
+ if chunk_size > (max_len * short_chunk_threshold):
+ chunk_size = max_len
+ else:
+ chunk_size = chunk_size % 25 + 1
+ mask = ~subsequent_chunk_mask(
+ size=x.size(0), chunk_size=chunk_size, device=x.device
+ )
+ x = self.encoder(
+ x, pos_emb, mask=mask, src_key_padding_mask=src_key_padding_mask
+ ) # (T, B, F)
+ else:
+ x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
+
+ if self.normalize_before:
+ x = self.after_norm(x)
+
+ return x, src_key_padding_mask
+
+ def eval_run_encoder(
+ self,
+ feature: Tensor,
+ supervisions: Optional[Supervisions] = None,
+ chunk_size: int = -1,
+ simulate_streaming=False,
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ """
+ Args:
+ feature:
+ The model input. Its shape is (N, T, C).
+ supervisions:
+ Supervision in lhotse format.
+ See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
+ CAUTION: It contains length information, i.e., start and number of
+ frames, before subsampling
+ It is read directly from the batch, without any sorting. It is used
+ to compute encoder padding mask, which is used as memory key padding
+ mask for the decoder.
+
+ Returns:
+ Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
+ Tensor: Mask tensor of dimension (batch_size, input_length)
+ """
+ # feature.shape: N T C
+ num_frames = feature.size(1)
+
+ # As temporarily in icefall only subsampling_rate == 4 is supported,
+ # following parameters are hard-coded here.
+ # Change it accordingly if other subsamling_rate are supported.
+ embed_left_context = 7
+ embed_conv_right_context = 3
+ subsampling_rate = 4
+ stride = chunk_size * subsampling_rate
+ decoding_window = embed_conv_right_context + stride
+
+ # This is also only compatible to sumsampling_rate == 4
+ length_after_subsampling = ((feature.size(1) - 1) // 2 - 1) // 2
+ src_key_padding_mask = encoder_padding_mask(
+ length_after_subsampling, supervisions
+ )
+ if src_key_padding_mask is not None:
+ src_key_padding_mask = src_key_padding_mask.to(feature.device)
+
+ if chunk_size < 0:
+ # non-streaming decoding
+ x = self.encoder_embed(feature)
+ x, pos_emb = self.encoder_pos(x)
+ x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
+ x = self.encoder(
+ x, pos_emb, src_key_padding_mask=src_key_padding_mask
+ ) # (T, B, F)
+ else:
+ if simulate_streaming:
+ # simulate chunk_by_chunk streaming decoding
+ # Results of this branch should be identical to following
+ # "else" branch.
+ # But this branch is a little slower
+ # as the feature is feeded chunk by chunk
+
+ # store the result of chunk_by_chunk decoding
+ encoder_output = []
+
+ # caches
+ pos_emb_positive = []
+ pos_emb_negative = []
+ pos_emb_central = None
+ encoder_cache = [None for i in range(len(self.encoder.layers))]
+ conv_cache = [None for i in range(len(self.encoder.layers))]
+
+ # start chunk_by_chunk decoding
+ offset = 0
+ for cur in range(
+ 0, num_frames - embed_left_context + 1, stride
+ ):
+ end = min(cur + decoding_window, num_frames)
+ cur_feature = feature[:, cur:end, :]
+ cur_feature = self.encoder_embed(cur_feature)
+ cur_embed, cur_pos_emb = self.encoder_pos(
+ cur_feature, offset
+ )
+ cur_embed = cur_embed.permute(
+ 1, 0, 2
+ ) # (B, T, F) -> (T, B, F)
+
+ cur_T = cur_feature.size(1)
+ if cur == 0:
+ # for first chunk extract the central pos embedding
+ pos_emb_central = cur_pos_emb[
+ 0, (chunk_size - 1), :
+ ].view(1, 1, -1)
+ cur_T -= 1
+ pos_emb_positive.append(cur_pos_emb[0, :cur_T].flip(0))
+ pos_emb_negative.append(cur_pos_emb[0, -cur_T:])
+ assert pos_emb_positive[-1].size(0) == cur_T
+
+ pos_emb_pos = torch.cat(pos_emb_positive, dim=0).unsqueeze(
+ 0
+ )
+ pos_emb_neg = torch.cat(pos_emb_negative, dim=0).unsqueeze(
+ 0
+ )
+ cur_pos_emb = torch.cat(
+ [pos_emb_pos.flip(1), pos_emb_central, pos_emb_neg],
+ dim=1,
+ )
+
+ x = self.encoder.chunk_forward(
+ cur_embed,
+ cur_pos_emb,
+ src_key_padding_mask=src_key_padding_mask[
+ :, : offset + cur_embed.size(0)
+ ],
+ encoder_cache=encoder_cache,
+ conv_cache=conv_cache,
+ offset=offset,
+ ) # (T, B, F)
+ encoder_output.append(x)
+ offset += cur_embed.size(0)
+
+ x = torch.cat(encoder_output, dim=0)
+ else:
+ # NOT simulate chunk_by_chunk decoding
+ # Results of this branch should be identical to previous
+ # simulate chunk_by_chunk decoding branch.
+ # But this branch is faster.
+ x = self.encoder_embed(feature)
+ x, pos_emb = self.encoder_pos(x)
+ x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
+ mask = ~subsequent_chunk_mask(
+ size=x.size(0), chunk_size=chunk_size, device=x.device
+ )
+ x = self.encoder(
+ x,
+ pos_emb,
+ mask=mask,
+ src_key_padding_mask=src_key_padding_mask,
+ ) # (T, B, F)
+
+ if self.normalize_before:
+ x = self.after_norm(x)
+
+ return x, src_key_padding_mask
+
+
+class ConformerEncoderLayer(nn.Module):
+ """
+ ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
+ See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
+
+ Args:
+ d_model: the number of expected features in the input (required).
+ nhead: the number of heads in the multiheadattention models (required).
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
+ dropout: the dropout value (default=0.1).
+ cnn_module_kernel (int): Kernel size of convolution module.
+ normalize_before: whether to use layer_norm before the first block.
+
+ Examples::
+ >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
+ >>> src = torch.rand(10, 32, 512)
+ >>> pos_emb = torch.rand(32, 19, 512)
+ >>> out = encoder_layer(src, pos_emb)
+ """
+
+ def __init__(
+ self,
+ d_model: int,
+ nhead: int,
+ dim_feedforward: int = 2048,
+ dropout: float = 0.1,
+ cnn_module_kernel: int = 31,
+ normalize_before: bool = True,
+ causal: bool = False,
+ ) -> None:
+ super(ConformerEncoderLayer, self).__init__()
+ self.self_attn = RelPositionMultiheadAttention(
+ d_model, nhead, dropout=0.0
+ )
+
+ self.feed_forward = nn.Sequential(
+ nn.Linear(d_model, dim_feedforward),
+ Swish(),
+ nn.Dropout(dropout),
+ nn.Linear(dim_feedforward, d_model),
+ )
+
+ self.feed_forward_macaron = nn.Sequential(
+ nn.Linear(d_model, dim_feedforward),
+ Swish(),
+ nn.Dropout(dropout),
+ nn.Linear(dim_feedforward, d_model),
+ )
+
+ self.conv_module = ConvolutionModule(
+ d_model, cnn_module_kernel, causal=causal
+ )
+
+ self.norm_ff_macaron = nn.LayerNorm(
+ d_model
+ ) # for the macaron style FNN module
+ self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
+ self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
+
+ self.ff_scale = 0.5
+
+ self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
+ self.norm_final = nn.LayerNorm(
+ d_model
+ ) # for the final output of the block
+
+ self.dropout = nn.Dropout(dropout)
+
+ self.normalize_before = normalize_before
+
+ def forward(
+ self,
+ src: Tensor,
+ pos_emb: Tensor,
+ src_mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ """
+ Pass the input through the encoder layer.
+
+ Args:
+ src: the sequence to the encoder layer (required).
+ pos_emb: Positional embedding tensor (required).
+ src_mask: the mask for the src sequence (optional).
+ src_key_padding_mask: the mask for the src keys per batch (optional).
+
+ Shape:
+ src: (S, N, E).
+ pos_emb: (N, 2*S-1, E)
+ src_mask: (S, S).
+ src_key_padding_mask: (N, S).
+ S is the source sequence length, N is the batch size, E is the feature number
+ """
+
+ # macaron style feed forward module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_ff_macaron(src)
+ src = residual + self.ff_scale * self.dropout(
+ self.feed_forward_macaron(src)
+ )
+ if not self.normalize_before:
+ src = self.norm_ff_macaron(src)
+
+ # multi-headed self-attention module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_mha(src)
+ src_att = self.self_attn(
+ src,
+ src,
+ src,
+ pos_emb=pos_emb,
+ attn_mask=src_mask,
+ key_padding_mask=src_key_padding_mask,
+ )[0]
+ src = residual + self.dropout(src_att)
+ if not self.normalize_before:
+ src = self.norm_mha(src)
+
+ # convolution module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_conv(src)
+ src = residual + self.dropout(self.conv_module(src))
+ if not self.normalize_before:
+ src = self.norm_conv(src)
+
+ # feed forward module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_ff(src)
+ src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
+ if not self.normalize_before:
+ src = self.norm_ff(src)
+
+ if self.normalize_before:
+ src = self.norm_final(src)
+
+ return src
+
+ def chunk_forward(
+ self,
+ src: Tensor,
+ pos_emb: Tensor,
+ src_mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ encoder_cache: Optional[Tensor] = None,
+ conv_cache: Optional[Tensor] = None,
+ offset=0,
+ ) -> Tensor:
+ """
+ Pass the input through the encoder layer.
+
+ Args:
+ src: the sequence to the encoder layer (required).
+ pos_emb: Positional embedding tensor (required).
+ src_mask: the mask for the src sequence (optional).
+ src_key_padding_mask: the mask for the src keys per batch (optional).
+
+ Shape:
+ src: (S, N, E).
+ pos_emb: (N, 2*S-1, E)
+ src_mask: (S, S).
+ src_key_padding_mask: (N, S).
+ S is the source sequence length, N is the batch size, E is the feature number
+ """
+
+ # macaron style feed forward module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_ff_macaron(src)
+ src = residual + self.ff_scale * self.dropout(
+ self.feed_forward_macaron(src)
+ )
+ if not self.normalize_before:
+ src = self.norm_ff_macaron(src)
+
+ # multi-headed self-attention module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_mha(src)
+ if encoder_cache is None:
+ # src: [chunk_size, N, F] e.g. [8, 41, 512]
+ key = src
+ val = key
+ encoder_cache = key
+ else:
+ key = torch.cat([encoder_cache, src], dim=0)
+ val = key
+ encoder_cache = key
+ src_att = self.self_attn(
+ src,
+ key,
+ val,
+ pos_emb=pos_emb,
+ attn_mask=src_mask,
+ key_padding_mask=src_key_padding_mask,
+ offset=offset,
+ )[0]
+ src = residual + self.dropout(src_att)
+ if not self.normalize_before:
+ src = self.norm_mha(src)
+
+ # convolution module
+ residual = src # [chunk_size, N, F] e.g. [8, 41, 512]
+ if self.normalize_before:
+ src = self.norm_conv(src)
+ if conv_cache is not None:
+ src = torch.cat([conv_cache, src], dim=0)
+ conv_cache = src
+
+ src = self.conv_module(src)
+ src = src[-residual.size(0) :, :, :] # noqa: E203
+
+ src = residual + self.dropout(src)
+ if not self.normalize_before:
+ src = self.norm_conv(src)
+
+ # feed forward module
+ residual = src
+ if self.normalize_before:
+ src = self.norm_ff(src)
+ src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
+ if not self.normalize_before:
+ src = self.norm_ff(src)
+
+ if self.normalize_before:
+ src = self.norm_final(src)
+
+ return src, encoder_cache, conv_cache
+
+
+class ConformerEncoder(nn.TransformerEncoder):
+ r"""ConformerEncoder is a stack of N encoder layers
+
+ Args:
+ encoder_layer: an instance of the ConformerEncoderLayer() class (required).
+ num_layers: the number of sub-encoder-layers in the encoder (required).
+ norm: the layer normalization component (optional).
+
+ Examples::
+ >>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
+ >>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
+ >>> src = torch.rand(10, 32, 512)
+ >>> pos_emb = torch.rand(32, 19, 512)
+ >>> out = conformer_encoder(src, pos_emb)
+ """
+
+ def __init__(
+ self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
+ ) -> None:
+ super(ConformerEncoder, self).__init__(
+ encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
+ )
+
+ def forward(
+ self,
+ src: Tensor,
+ pos_emb: Tensor,
+ mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ r"""Pass the input through the encoder layers in turn.
+
+ Args:
+ src: the sequence to the encoder (required).
+ pos_emb: Positional embedding tensor (required).
+ mask: the mask for the src sequence (optional).
+ src_key_padding_mask: the mask for the src keys per batch (optional).
+
+ Shape:
+ src: (S, N, E).
+ pos_emb: (N, 2*S-1, E)
+ mask: (S, S).
+ src_key_padding_mask: (N, S).
+ S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
+
+ """
+ output = src
+
+ for mod in self.layers:
+ output = mod(
+ output,
+ pos_emb,
+ src_mask=mask,
+ src_key_padding_mask=src_key_padding_mask,
+ )
+
+ if self.norm is not None:
+ output = self.norm(output)
+
+ return output
+
+ def chunk_forward(
+ self,
+ src: Tensor,
+ pos_emb: Tensor,
+ mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ encoder_cache=None,
+ conv_cache=None,
+ offset=0,
+ ) -> Tensor:
+ r"""Pass the input through the encoder layers in turn.
+
+ Args:
+ src: the sequence to the encoder (required).
+ pos_emb: Positional embedding tensor (required).
+ mask: the mask for the src sequence (optional).
+ src_key_padding_mask: the mask for the src keys per batch (optional).
+
+ Shape:
+ src: (S, N, E).
+ pos_emb: (N, 2*S-1, E)
+ mask: (S, S).
+ src_key_padding_mask: (N, S).
+ S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
+
+ """
+ output = src
+
+ for layer_index, mod in enumerate(self.layers):
+ output, e_cache, c_cache = mod.chunk_forward(
+ output,
+ pos_emb,
+ src_mask=mask,
+ src_key_padding_mask=src_key_padding_mask,
+ encoder_cache=encoder_cache[layer_index],
+ conv_cache=conv_cache[layer_index],
+ offset=offset,
+ )
+ encoder_cache[layer_index] = e_cache
+ conv_cache[layer_index] = c_cache
+
+ if self.norm is not None:
+ output = self.norm(output)
+
+ return output
+
+
+class RelPositionalEncoding(torch.nn.Module):
+ """Relative positional encoding module.
+
+ See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
+ Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
+
+ Args:
+ d_model: Embedding dimension.
+ dropout_rate: Dropout rate.
+ max_len: Maximum input length.
+
+ """
+
+ def __init__(
+ self, d_model: int, dropout_rate: float, max_len: int = 5000
+ ) -> None:
+ """Construct an PositionalEncoding object."""
+ super(RelPositionalEncoding, self).__init__()
+ self.d_model = d_model
+ self.xscale = math.sqrt(self.d_model)
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
+ self.pe = None
+ self.extend_pe(torch.tensor(0.0).expand(1, max_len))
+
+ def extend_pe(self, x: Tensor, offset: int = 0) -> None:
+ """Reset the positional encodings."""
+ x_size_1 = offset + x.size(1)
+ if self.pe is not None:
+ # self.pe contains both positive and negative parts
+ # the length of self.pe is 2 * input_len - 1
+ if self.pe.size(1) >= x_size_1 * 2 - 1:
+ # Note: TorchScript doesn't implement operator== for torch.Device
+ if self.pe.dtype != x.dtype or str(self.pe.device) != str(
+ x.device
+ ):
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+ return
+ # Suppose `i` means to the position of query vecotr and `j` means the
+ # position of key vector. We use position relative positions when keys
+ # are to the left (i>j) and negative relative positions otherwise (i Tuple[Tensor, Tensor]:
+ """Add positional encoding.
+
+ Args:
+ x (torch.Tensor): Input tensor (batch, time, `*`).
+
+ Returns:
+ torch.Tensor: Encoded tensor (batch, time, `*`).
+ torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
+
+ """
+ self.extend_pe(x, offset)
+ x = x * self.xscale
+ x_size_1 = offset + x.size(1)
+ pos_emb = self.pe[
+ :,
+ self.pe.size(1) // 2
+ - x_size_1
+ + 1 : self.pe.size(1) // 2 # noqa E203
+ + x_size_1,
+ ]
+ x_T = x.size(1)
+ if offset > 0:
+ pos_emb = torch.cat([pos_emb[:, :x_T], pos_emb[:, -x_T:]], dim=1)
+ else:
+ pos_emb = torch.cat(
+ [
+ pos_emb[:, : (x_T - 1)],
+ self.pe[0, self.pe.size(1) // 2].view(
+ 1, 1, self.pe.size(-1)
+ ),
+ pos_emb[:, -(x_T - 1) :], # noqa: E203
+ ],
+ dim=1,
+ )
+
+ return self.dropout(x), self.dropout(pos_emb)
+
+
+class RelPositionMultiheadAttention(nn.Module):
+ r"""Multi-Head Attention layer with relative position encoding
+
+ See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
+
+ Args:
+ embed_dim: total dimension of the model.
+ num_heads: parallel attention heads.
+ dropout: a Dropout layer on attn_output_weights. Default: 0.0.
+
+ Examples::
+
+ >>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
+ >>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
+ """
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ ) -> None:
+ super(RelPositionMultiheadAttention, self).__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ assert (
+ self.head_dim * num_heads == self.embed_dim
+ ), "embed_dim must be divisible by num_heads"
+
+ self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
+
+ # linear transformation for positional encoding.
+ self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
+ # these two learnable bias are used in matrix c and matrix d
+ # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
+ self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
+ self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
+
+ self._reset_parameters()
+
+ def _reset_parameters(self) -> None:
+ nn.init.xavier_uniform_(self.in_proj.weight)
+ nn.init.constant_(self.in_proj.bias, 0.0)
+ nn.init.constant_(self.out_proj.bias, 0.0)
+
+ nn.init.xavier_uniform_(self.pos_bias_u)
+ nn.init.xavier_uniform_(self.pos_bias_v)
+
+ def forward(
+ self,
+ query: Tensor,
+ key: Tensor,
+ value: Tensor,
+ pos_emb: Tensor,
+ key_padding_mask: Optional[Tensor] = None,
+ need_weights: bool = True,
+ attn_mask: Optional[Tensor] = None,
+ offset=0,
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ r"""
+ Args:
+ query, key, value: map a query and a set of key-value pairs to an output.
+ pos_emb: Positional embedding tensor
+ key_padding_mask: if provided, specified padding elements in the key will
+ be ignored by the attention. When given a binary mask and a value is True,
+ the corresponding value on the attention layer will be ignored. When given
+ a byte mask and a value is non-zero, the corresponding value on the attention
+ layer will be ignored
+ need_weights: output attn_output_weights.
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+
+ Shape:
+ - Inputs:
+ - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+ If a ByteTensor is provided, the non-zero positions will be ignored while the position
+ with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+ 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+ S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
+ positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+ while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+ is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+ is provided, it will be added to the attention weight.
+
+ - Outputs:
+ - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+ E is the embedding dimension.
+ - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+ L is the target sequence length, S is the source sequence length.
+ """
+ return self.multi_head_attention_forward(
+ query,
+ key,
+ value,
+ pos_emb,
+ self.embed_dim,
+ self.num_heads,
+ self.in_proj.weight,
+ self.in_proj.bias,
+ self.dropout,
+ self.out_proj.weight,
+ self.out_proj.bias,
+ training=self.training,
+ key_padding_mask=key_padding_mask,
+ need_weights=need_weights,
+ attn_mask=attn_mask,
+ offset=offset,
+ )
+
+ def rel_shift(self, x: Tensor, offset=0) -> Tensor:
+ """Compute relative positional encoding.
+
+ Args:
+ x: Input tensor (batch, head, time1, 2*time1-1).
+ time1 means the length of query vector.
+
+ Returns:
+ Tensor: tensor of shape (batch, head, time1, time2)
+ (note: time2 == time1 + offset, since it is for
+ the key, while time1 is for the query).
+ """
+ (batch_size, num_heads, time1, n) = x.shape
+ time2 = time1 + offset
+ assert n == 2 * time2 - 1
+ # Note: TorchScript requires explicit arg for stride()
+ batch_stride = x.stride(0)
+ head_stride = x.stride(1)
+ time1_stride = x.stride(2)
+ n_stride = x.stride(3)
+
+ return x.as_strided(
+ (batch_size, num_heads, time1, time2),
+ (batch_stride, head_stride, time1_stride - n_stride, n_stride),
+ storage_offset=n_stride * (time1 - 1),
+ )
+
+ def multi_head_attention_forward(
+ self,
+ query: Tensor,
+ key: Tensor,
+ value: Tensor,
+ pos_emb: Tensor,
+ embed_dim_to_check: int,
+ num_heads: int,
+ in_proj_weight: Tensor,
+ in_proj_bias: Tensor,
+ dropout_p: float,
+ out_proj_weight: Tensor,
+ out_proj_bias: Tensor,
+ training: bool = True,
+ key_padding_mask: Optional[Tensor] = None,
+ need_weights: bool = True,
+ attn_mask: Optional[Tensor] = None,
+ offset=0,
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ r"""
+ Args:
+ query, key, value: map a query and a set of key-value pairs to an output.
+ pos_emb: Positional embedding tensor
+ embed_dim_to_check: total dimension of the model.
+ num_heads: parallel attention heads.
+ in_proj_weight, in_proj_bias: input projection weight and bias.
+ dropout_p: probability of an element to be zeroed.
+ out_proj_weight, out_proj_bias: the output projection weight and bias.
+ training: apply dropout if is ``True``.
+ key_padding_mask: if provided, specified padding elements in the key will
+ be ignored by the attention. This is an binary mask. When the value is True,
+ the corresponding value on the attention layer will be filled with -inf.
+ need_weights: output attn_output_weights.
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+
+ Shape:
+ Inputs:
+ - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
+ length, N is the batch size, E is the embedding dimension.
+ - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+ If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
+ will be unchanged. If a BoolTensor is provided, the positions with the
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+ 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+ S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
+ positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+ while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+ is provided, it will be added to the attention weight.
+
+ Outputs:
+ - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+ E is the embedding dimension.
+ - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+ L is the target sequence length, S is the source sequence length.
+ """
+
+ tgt_len, bsz, embed_dim = query.size()
+ assert embed_dim == embed_dim_to_check
+ assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
+
+ head_dim = embed_dim // num_heads
+ assert (
+ head_dim * num_heads == embed_dim
+ ), "embed_dim must be divisible by num_heads"
+ scaling = float(head_dim) ** -0.5
+
+ if torch.equal(query, key) and torch.equal(key, value):
+ # self-attention
+ q, k, v = nn.functional.linear(
+ query, in_proj_weight, in_proj_bias
+ ).chunk(3, dim=-1)
+
+ elif torch.equal(key, value):
+ # encoder-decoder attention
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = 0
+ _end = embed_dim
+ _w = in_proj_weight[_start:_end, :]
+ if _b is not None:
+ _b = _b[_start:_end]
+ q = nn.functional.linear(query, _w, _b)
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = embed_dim
+ _end = None
+ _w = in_proj_weight[_start:, :]
+ if _b is not None:
+ _b = _b[_start:]
+ k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
+
+ else:
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = 0
+ _end = embed_dim
+ _w = in_proj_weight[_start:_end, :]
+ if _b is not None:
+ _b = _b[_start:_end]
+ q = nn.functional.linear(query, _w, _b)
+
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = embed_dim
+ _end = embed_dim * 2
+ _w = in_proj_weight[_start:_end, :]
+ if _b is not None:
+ _b = _b[_start:_end]
+ k = nn.functional.linear(key, _w, _b)
+
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = embed_dim * 2
+ _end = None
+ _w = in_proj_weight[_start:, :]
+ if _b is not None:
+ _b = _b[_start:]
+ v = nn.functional.linear(value, _w, _b)
+
+ if attn_mask is not None:
+ assert (
+ attn_mask.dtype == torch.float32
+ or attn_mask.dtype == torch.float64
+ or attn_mask.dtype == torch.float16
+ or attn_mask.dtype == torch.uint8
+ or attn_mask.dtype == torch.bool
+ ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
+ attn_mask.dtype
+ )
+ if attn_mask.dtype == torch.uint8:
+ warnings.warn(
+ "Byte tensor for attn_mask is deprecated. Use bool tensor instead."
+ )
+ attn_mask = attn_mask.to(torch.bool)
+
+ if attn_mask.dim() == 2:
+ attn_mask = attn_mask.unsqueeze(0)
+ if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
+ raise RuntimeError(
+ "The size of the 2D attn_mask is not correct."
+ )
+ elif attn_mask.dim() == 3:
+ if list(attn_mask.size()) != [
+ bsz * num_heads,
+ query.size(0),
+ key.size(0),
+ ]:
+ raise RuntimeError(
+ "The size of the 3D attn_mask is not correct."
+ )
+ else:
+ raise RuntimeError(
+ "attn_mask's dimension {} is not supported".format(
+ attn_mask.dim()
+ )
+ )
+ # attn_mask's dim is 3 now.
+
+ # convert ByteTensor key_padding_mask to bool
+ if (
+ key_padding_mask is not None
+ and key_padding_mask.dtype == torch.uint8
+ ):
+ warnings.warn(
+ "Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
+ )
+ key_padding_mask = key_padding_mask.to(torch.bool)
+
+ q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
+ k = k.contiguous().view(-1, bsz, num_heads, head_dim)
+ v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+
+ src_len = k.size(0)
+
+ if key_padding_mask is not None:
+ assert key_padding_mask.size(0) == bsz, "{} == {}".format(
+ key_padding_mask.size(0), bsz
+ )
+ assert key_padding_mask.size(1) == src_len, "{} == {}".format(
+ key_padding_mask.size(1), src_len
+ )
+
+ q = q.transpose(0, 1) # (batch, time1, head, d_k)
+
+ pos_emb_bsz = pos_emb.size(0)
+ assert pos_emb_bsz in (1, bsz) # actually it is 1
+ p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
+
+ # (batch, 2*time1, head, d_k) --> (batch, head, d_k, 2*time -1)
+ p = p.permute(0, 2, 3, 1)
+
+ q_with_bias_u = (q + self.pos_bias_u).transpose(
+ 1, 2
+ ) # (batch, head, time1, d_k)
+
+ q_with_bias_v = (q + self.pos_bias_v).transpose(
+ 1, 2
+ ) # (batch, head, time1, d_k)
+
+ # compute attention score
+ # first compute matrix a and matrix c
+ # as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
+ k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
+ matrix_ac = torch.matmul(
+ q_with_bias_u, k
+ ) # (batch, head, time1, time2)
+
+ # compute matrix b and matrix d
+ matrix_bd = torch.matmul(
+ q_with_bias_v, p
+ ) # (batch, head, time1, 2*time1-1)
+ matrix_bd = self.rel_shift(
+ matrix_bd, offset=offset
+ ) # [B, head, time1, time2]
+ attn_output_weights = (
+ matrix_ac + matrix_bd
+ ) * scaling # (batch, head, time1, time2)
+
+ attn_output_weights = attn_output_weights.view(
+ bsz * num_heads, tgt_len, -1
+ )
+
+ assert list(attn_output_weights.size()) == [
+ bsz * num_heads,
+ tgt_len,
+ src_len,
+ ]
+
+ if attn_mask is not None:
+ if attn_mask.dtype == torch.bool:
+ attn_output_weights.masked_fill_(attn_mask, float("-inf"))
+ else:
+ attn_output_weights += attn_mask
+
+ if key_padding_mask is not None:
+ attn_output_weights = attn_output_weights.view(
+ bsz, num_heads, tgt_len, src_len
+ )
+ attn_output_weights = attn_output_weights.masked_fill(
+ key_padding_mask.unsqueeze(1).unsqueeze(2),
+ float("-inf"),
+ )
+ attn_output_weights = attn_output_weights.view(
+ bsz * num_heads, tgt_len, src_len
+ )
+
+ attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
+ attn_output_weights = nn.functional.dropout(
+ attn_output_weights, p=dropout_p, training=training
+ )
+
+ attn_output = torch.bmm(attn_output_weights, v)
+ assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
+ attn_output = (
+ attn_output.transpose(0, 1)
+ .contiguous()
+ .view(tgt_len, bsz, embed_dim)
+ )
+ attn_output = nn.functional.linear(
+ attn_output, out_proj_weight, out_proj_bias
+ )
+
+ if need_weights:
+ # average attention weights over heads
+ attn_output_weights = attn_output_weights.view(
+ bsz, num_heads, tgt_len, src_len
+ )
+ return attn_output, attn_output_weights.sum(dim=1) / num_heads
+ else:
+ return attn_output, None
+
+
+class ConvolutionModule(nn.Module):
+ """ConvolutionModule in Conformer model.
+ Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
+
+ Args:
+ channels (int): The number of channels of conv layers.
+ kernel_size (int): Kernerl size of conv layers.
+ bias (bool): Whether to use bias in conv layers (default=True).
+
+ """
+
+ def __init__(
+ self,
+ channels: int,
+ kernel_size: int,
+ bias: bool = True,
+ causal: bool = False,
+ ) -> None:
+ """Construct an ConvolutionModule object."""
+ super(ConvolutionModule, self).__init__()
+ # kernerl_size should be a odd number for 'SAME' padding
+ assert (kernel_size - 1) % 2 == 0
+
+ self.pointwise_conv1 = nn.Conv1d(
+ channels,
+ 2 * channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=bias,
+ )
+ # from https://github.com/wenet-e2e/wenet/blob/main/wenet/transformer/convolution.py#L41
+ if causal:
+ self.lorder = kernel_size - 1
+ padding = 0 # manualy padding self.lorder zeros to the left later
+ else:
+ assert (kernel_size - 1) % 2 == 0
+ self.lorder = 0
+ padding = (kernel_size - 1) // 2
+ self.depthwise_conv = nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ stride=1,
+ padding=padding,
+ groups=channels,
+ bias=bias,
+ )
+ self.norm = nn.BatchNorm1d(channels)
+ self.pointwise_conv2 = nn.Conv1d(
+ channels,
+ channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=bias,
+ )
+ self.activation = Swish()
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Compute convolution module.
+
+ Args:
+ x: Input tensor (#time, batch, channels).
+
+ Returns:
+ Tensor: Output tensor (#time, batch, channels).
+
+ """
+ # exchange the temporal dimension and the feature dimension
+ x = x.permute(1, 2, 0) # (#batch, channels, time).
+
+ # GLU mechanism
+ x = self.pointwise_conv1(x) # (batch, 2*channels, time)
+ x = nn.functional.glu(x, dim=1) # (batch, channels, time)
+
+ # 1D Depthwise Conv
+ if self.lorder > 0:
+ # manualy padding self.lorder zeros to the left
+ # make depthwise_conv causal
+ x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
+ x = self.depthwise_conv(x)
+ x = self.activation(self.norm(x))
+
+ x = self.pointwise_conv2(x) # (batch, channel, time)
+
+ return x.permute(2, 0, 1)
+
+
+class Swish(torch.nn.Module):
+ """Construct an Swish object."""
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Return Swich activation function."""
+ return x * torch.sigmoid(x)
+
+
+def identity(x):
+ return x
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/label_smoothing.py b/egs/librispeech/ASR/streaming_conformer_ctc/label_smoothing.py
new file mode 120000
index 000000000..08734abd7
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/label_smoothing.py
@@ -0,0 +1 @@
+../conformer_ctc/label_smoothing.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py b/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py
new file mode 100755
index 000000000..a74c51836
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/streaming_decode.py
@@ -0,0 +1,521 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import argparse
+import logging
+from collections import defaultdict
+from pathlib import Path
+from typing import Dict, List, Optional, Tuple
+
+import k2
+import sentencepiece as spm
+import torch
+import torch.nn as nn
+from asr_datamodule import LibriSpeechAsrDataModule
+from conformer import Conformer
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import average_checkpoints, load_checkpoint
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+ AttributeDict,
+ setup_logger,
+ store_transcripts,
+ str2bool,
+ write_error_stats,
+)
+
+
+# from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/common.py#L166
+def remove_duplicates_and_blank(hyp: List[int]) -> List[int]:
+ new_hyp: List[int] = []
+ cur = 0
+ while cur < len(hyp):
+ if hyp[cur] != 0:
+ new_hyp.append(hyp[cur])
+ prev = cur
+ while cur < len(hyp) and hyp[cur] == hyp[prev]:
+ cur += 1
+ return new_hyp
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--epoch",
+ type=int,
+ default=34,
+ help="It specifies the checkpoint to use for decoding."
+ "Note: Epoch counts from 0.",
+ )
+ parser.add_argument(
+ "--avg",
+ type=int,
+ default=20,
+ help="Number of checkpoints to average. Automatically select "
+ "consecutive checkpoints before the checkpoint specified by "
+ "'--epoch'. ",
+ )
+
+ parser.add_argument(
+ "--chunk-size",
+ type=int,
+ default=8,
+ help="Frames of right context"
+ "-1 for whole right context, i.e. non-streaming decoding",
+ )
+
+ parser.add_argument(
+ "--tailing-num-frames",
+ type=int,
+ default=20,
+ help="tailing dummy frames padded to the right,"
+ "only used during decoding",
+ )
+
+ parser.add_argument(
+ "--simulate-streaming",
+ type=str2bool,
+ default=False,
+ help="simulate chunk by chunk decoding",
+ )
+ parser.add_argument(
+ "--method",
+ type=str,
+ default="ctc-greedy-search",
+ help="Streaming Decoding method",
+ )
+
+ parser.add_argument(
+ "--export",
+ type=str2bool,
+ default=False,
+ help="""When enabled, the averaged model is saved to
+ conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
+ pretrained.pt contains a dict {"model": model.state_dict()},
+ which can be loaded by `icefall.checkpoint.load_checkpoint()`.
+ """,
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=Path,
+ default="streaming_conformer_ctc/exp",
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--trained-dir",
+ type=Path,
+ default=None,
+ help="The experiment dir",
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=Path,
+ default="data/lang_bpe",
+ help="The lang dir",
+ )
+
+ parser.add_argument(
+ "--avg-models",
+ type=str,
+ default=None,
+ help="Manually select models to average, seperated by comma;"
+ "e.g. 60,62,63,72",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ params = AttributeDict(
+ {
+ "exp_dir": Path("conformer_ctc/exp"),
+ "lang_dir": Path("data/lang_bpe"),
+ # parameters for conformer
+ "causal": True,
+ "subsampling_factor": 4,
+ "vgg_frontend": False,
+ "use_feat_batchnorm": True,
+ "feature_dim": 80,
+ "nhead": 8,
+ "attention_dim": 512,
+ "num_decoder_layers": 6,
+ # parameters for decoding
+ "search_beam": 20,
+ "output_beam": 8,
+ "min_active_states": 30,
+ "max_active_states": 10000,
+ "use_double_scores": True,
+ }
+ )
+ return params
+
+
+def decode_one_batch(
+ params: AttributeDict,
+ model: nn.Module,
+ bpe_model: Optional[spm.SentencePieceProcessor],
+ batch: dict,
+ word_table: k2.SymbolTable,
+ sos_id: int,
+ eos_id: int,
+ chunk_size: int = -1,
+ simulate_streaming=False,
+) -> Dict[str, List[List[str]]]:
+ """Decode one batch and return the result in a dict. The dict has the
+ following format:
+
+ - key: It indicates the setting used for decoding. For example,
+ if no rescoring is used, the key is the string `no_rescore`.
+ If LM rescoring is used, the key is the string `lm_scale_xxx`,
+ where `xxx` is the value of `lm_scale`. An example key is
+ `lm_scale_0.7`
+ - value: It contains the decoding result. `len(value)` equals to
+ batch size. `value[i]` is the decoding result for the i-th
+ utterance in the given batch.
+ Args:
+ params:
+ It's the return value of :func:`get_params`.
+
+ model:
+ The neural model.
+ bpe_model:
+ The BPE model. Used only when params.method is ctc-decoding.
+ batch:
+ It is the return value from iterating
+ `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
+ for the format of the `batch`.
+ word_table:
+ The word symbol table.
+ sos_id:
+ The token ID of the SOS.
+ eos_id:
+ The token ID of the EOS.
+ Returns:
+ Return the decoding result. See above description for the format of
+ the returned dict.
+ """
+ feature = batch["inputs"]
+ device = torch.device("cuda")
+ assert feature.ndim == 3
+ feature = feature.to(device)
+ # at entry, feature is (N, T, C)
+
+ supervisions = batch["supervisions"]
+ # Extra dummy tailing frames my reduce deletion error
+ # example WITHOUT padding:
+ # CHAPTER SEVEN ON THE RACES OF MAN
+ # example WITH padding:
+ # CHAPTER SEVEN ON THE RACES OF (MAN->*)
+ tailing_frames = (
+ torch.tensor([-23.0259])
+ .expand([feature.size(0), params.tailing_num_frames, 80])
+ .to(feature.device)
+ )
+ feature = torch.cat([feature, tailing_frames], dim=1)
+ supervisions["num_frames"] += params.tailing_num_frames
+
+ nnet_output, memory, memory_key_padding_mask = model(
+ feature,
+ supervisions,
+ chunk_size=chunk_size,
+ simulate_streaming=simulate_streaming,
+ )
+
+ assert params.method == "ctc-greedy-search"
+ key = "ctc-greedy-search"
+ batch_size = nnet_output.size(0)
+ maxlen = nnet_output.size(1)
+ topk_prob, topk_index = nnet_output.topk(1, dim=2) # (B, maxlen, 1)
+ topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen)
+ topk_index = topk_index.masked_fill_(
+ memory_key_padding_mask, 0
+ ) # (B, maxlen)
+ token_ids = [token_id.tolist() for token_id in topk_index]
+ token_ids = [
+ remove_duplicates_and_blank(token_id) for token_id in token_ids
+ ]
+ hyps = bpe_model.decode(token_ids)
+ hyps = [s.split() for s in hyps]
+ return {key: hyps}
+
+
+def decode_dataset(
+ dl: torch.utils.data.DataLoader,
+ params: AttributeDict,
+ model: nn.Module,
+ bpe_model: Optional[spm.SentencePieceProcessor],
+ word_table: k2.SymbolTable,
+ sos_id: int,
+ eos_id: int,
+ chunk_size: int = -1,
+ simulate_streaming=False,
+) -> Dict[str, List[Tuple[List[str], List[str]]]]:
+ """Decode dataset.
+
+ Args:
+ dl:
+ PyTorch's dataloader containing the dataset to decode.
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The neural model.
+ bpe_model:
+ The BPE model. Used only when params.method is ctc-decoding.
+ word_table:
+ It is the word symbol table.
+ sos_id:
+ The token ID for SOS.
+ eos_id:
+ The token ID for EOS.
+ chunk_size:
+ right context to simulate streaming decoding
+ -1 for whole right context, i.e. non-stream decoding
+ Returns:
+ Return a dict, whose key may be "no-rescore" if no LM rescoring
+ is used, or it may be "lm_scale_0.7" if LM rescoring is used.
+ Its value is a list of tuples. Each tuple contains two elements:
+ The first is the reference transcript, and the second is the
+ predicted result.
+ """
+ results = []
+
+ num_cuts = 0
+
+ try:
+ num_batches = len(dl)
+ except TypeError:
+ num_batches = "?"
+
+ results = defaultdict(list)
+ for batch_idx, batch in enumerate(dl):
+ texts = batch["supervisions"]["text"]
+
+ hyps_dict = decode_one_batch(
+ params=params,
+ model=model,
+ bpe_model=bpe_model,
+ batch=batch,
+ word_table=word_table,
+ sos_id=sos_id,
+ eos_id=eos_id,
+ chunk_size=chunk_size,
+ simulate_streaming=simulate_streaming,
+ )
+
+ for lm_scale, hyps in hyps_dict.items():
+ this_batch = []
+ assert len(hyps) == len(texts)
+ for hyp_words, ref_text in zip(hyps, texts):
+ ref_words = ref_text.split()
+ this_batch.append((ref_words, hyp_words))
+
+ results[lm_scale].extend(this_batch)
+
+ num_cuts += len(batch["supervisions"]["text"])
+
+ if batch_idx % 100 == 0:
+ batch_str = f"{batch_idx}/{num_batches}"
+
+ logging.info(
+ f"batch {batch_str}, cuts processed until now is {num_cuts}"
+ )
+
+ return results
+
+
+def save_results(
+ params: AttributeDict,
+ test_set_name: str,
+ results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
+):
+ if params.method == "attention-decoder":
+ # Set it to False since there are too many logs.
+ enable_log = False
+ else:
+ enable_log = True
+ test_set_wers = dict()
+ if params.avg_models is not None:
+ avg_models = params.avg_models.replace(",", "_")
+ result_file_prefix = f"epoch-avg-{avg_models}-chunksize \
+ -{params.chunk_size}-tailing-num-frames-{params.tailing_num_frames}-"
+ else:
+ result_file_prefix = f"epoch-{params.epoch}-avg-{params.avg}-chunksize \
+ -{params.chunk_size}-tailing-num-frames-{params.tailing_num_frames}-"
+ for key, results in results_dict.items():
+ recog_path = (
+ params.exp_dir
+ / f"{result_file_prefix}recogs-{test_set_name}-{key}.txt"
+ )
+ store_transcripts(filename=recog_path, texts=results)
+ if enable_log:
+ logging.info(f"The transcripts are stored in {recog_path}")
+
+ # The following prints out WERs, per-word error statistics and aligned
+ # ref/hyp pairs.
+ errs_filename = (
+ params.exp_dir
+ / f"{result_file_prefix}-errs-{test_set_name}-{key}.txt"
+ )
+ with open(errs_filename, "w") as f:
+ wer = write_error_stats(
+ f, f"{test_set_name}-{key}", results, enable_log=enable_log
+ )
+ test_set_wers[key] = wer
+
+ if enable_log:
+ logging.info(
+ "Wrote detailed error stats to {}".format(errs_filename)
+ )
+
+ test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
+ errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
+ with open(errs_info, "w") as f:
+ print("settings\tWER", file=f)
+ for key, val in test_set_wers:
+ print("{}\t{}".format(key, val), file=f)
+
+ s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
+ note = "\tbest for {}".format(test_set_name)
+ for key, val in test_set_wers:
+ s += "{}\t{}{}\n".format(key, val, note)
+ note = ""
+ logging.info(s)
+
+
+@torch.no_grad()
+def main():
+ parser = get_parser()
+ LibriSpeechAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+
+ params = get_params()
+ params.update(vars(args))
+
+ setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
+ logging.info("Decoding started")
+ logging.info(params)
+
+ if params.trained_dir is not None:
+ params.lang_dir = Path(params.trained_dir) / "lang_bpe"
+ # used naming result files
+ params.epoch = "trained_model"
+ params.avg = 1
+
+ lexicon = Lexicon(params.lang_dir)
+ max_token_id = max(lexicon.tokens)
+ num_classes = max_token_id + 1 # +1 for the blank
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", 0)
+
+ logging.info(f"device: {device}")
+
+ graph_compiler = BpeCtcTrainingGraphCompiler(
+ params.lang_dir,
+ device=device,
+ sos_token="",
+ eos_token="",
+ )
+ sos_id = graph_compiler.sos_id
+ eos_id = graph_compiler.eos_id
+
+ model = Conformer(
+ num_features=params.feature_dim,
+ nhead=params.nhead,
+ d_model=params.attention_dim,
+ num_classes=num_classes,
+ subsampling_factor=params.subsampling_factor,
+ num_decoder_layers=params.num_decoder_layers,
+ vgg_frontend=params.vgg_frontend,
+ use_feat_batchnorm=params.use_feat_batchnorm,
+ causal=params.causal,
+ )
+
+ if params.trained_dir is not None:
+ model_name = f"{params.trained_dir}/trained_streaming_conformer.pt"
+ load_checkpoint(model_name, model)
+ elif params.avg == 1 and params.avg_models is not None:
+ load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
+ else:
+ filenames = []
+ if params.avg_models is not None:
+ model_ids = params.avg_models.split(",")
+ for i in model_ids:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ else:
+ start = params.epoch - params.avg + 1
+ for i in range(start, params.epoch + 1):
+ if start >= 0:
+ filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
+ logging.info(f"averaging {filenames}")
+ model.load_state_dict(average_checkpoints(filenames))
+
+ if params.export:
+ logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
+ torch.save(
+ {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
+ )
+ return
+
+ model.to(device)
+ model.eval()
+ num_param = sum([p.numel() for p in model.parameters()])
+ logging.info(f"Number of model parameters: {num_param}")
+
+ librispeech = LibriSpeechAsrDataModule(args)
+ # CAUTION: `test_sets` is for displaying only.
+ # If you want to skip test-clean, you have to skip
+ # it inside the for loop. That is, use
+ #
+ # if test_set == 'test-clean': continue
+ #
+ bpe_model = spm.SentencePieceProcessor()
+ bpe_model.load(str(params.lang_dir / "bpe.model"))
+ test_sets = ["test-clean", "test-other"]
+ for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
+ results_dict = decode_dataset(
+ dl=test_dl,
+ params=params,
+ model=model,
+ bpe_model=bpe_model,
+ word_table=lexicon.word_table,
+ sos_id=sos_id,
+ eos_id=eos_id,
+ chunk_size=params.chunk_size,
+ simulate_streaming=params.simulate_streaming,
+ )
+
+ save_results(
+ params=params, test_set_name=test_set, results_dict=results_dict
+ )
+
+ logging.info("Done!")
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/subsampling.py b/egs/librispeech/ASR/streaming_conformer_ctc/subsampling.py
new file mode 120000
index 000000000..6fee09e58
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/subsampling.py
@@ -0,0 +1 @@
+../conformer_ctc/subsampling.py
\ No newline at end of file
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/train.py b/egs/librispeech/ASR/streaming_conformer_ctc/train.py
new file mode 100755
index 000000000..8b4d6701e
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/train.py
@@ -0,0 +1,745 @@
+#!/usr/bin/env python3
+# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
+# Wei Kang
+# Mingshuang Luo)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import argparse
+import logging
+from pathlib import Path
+from shutil import copyfile
+from typing import Optional, Tuple
+
+import k2
+import torch
+import torch.multiprocessing as mp
+import torch.nn as nn
+from asr_datamodule import LibriSpeechAsrDataModule
+from conformer import Conformer
+from lhotse.utils import fix_random_seed
+from torch import Tensor
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from transformer import Noam
+
+from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
+from icefall.checkpoint import load_checkpoint
+from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
+from icefall.dist import cleanup_dist, setup_dist
+from icefall.env import get_env_info
+from icefall.lexicon import Lexicon
+from icefall.utils import (
+ AttributeDict,
+ MetricsTracker,
+ encode_supervisions,
+ setup_logger,
+ str2bool,
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
+
+ parser.add_argument(
+ "--world-size",
+ type=int,
+ default=1,
+ help="Number of GPUs for DDP training.",
+ )
+
+ parser.add_argument(
+ "--master-port",
+ type=int,
+ default=12354,
+ help="Master port to use for DDP training.",
+ )
+
+ parser.add_argument(
+ "--tensorboard",
+ type=str2bool,
+ default=True,
+ help="Should various information be logged in tensorboard.",
+ )
+
+ parser.add_argument(
+ "--num-epochs",
+ type=int,
+ default=78,
+ help="Number of epochs to train.",
+ )
+
+ parser.add_argument(
+ "--start-epoch",
+ type=int,
+ default=0,
+ help="""Resume training from from this epoch.
+ If it is positive, it will load checkpoint from
+ conformer_ctc/exp/epoch-{start_epoch-1}.pt
+ """,
+ )
+
+ parser.add_argument(
+ "--exp-dir",
+ type=str,
+ default="conformer_ctc/exp",
+ help="""The experiment dir.
+ It specifies the directory where all training related
+ files, e.g., checkpoints, log, etc, are saved
+ """,
+ )
+
+ parser.add_argument(
+ "--lang-dir",
+ type=str,
+ default="data/lang_bpe_500",
+ help="""The lang dir
+ It contains language related input files such as
+ "lexicon.txt"
+ """,
+ )
+
+ parser.add_argument(
+ "--att-rate",
+ type=float,
+ default=0.8,
+ help="""The attention rate.
+ The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
+ """,
+ )
+
+ parser.add_argument(
+ "--dynamic-chunk-training",
+ type=str2bool,
+ default=True,
+ help="Whether to use dynamic right context during training.",
+ )
+
+ parser.add_argument(
+ "--short-chunk-proportion",
+ type=float,
+ default=0.7,
+ help="Proportion of samples trained with short right context",
+ )
+
+ return parser
+
+
+def get_params() -> AttributeDict:
+ """Return a dict containing training parameters.
+
+ All training related parameters that are not passed from the commandline
+ are saved in the variable `params`.
+
+ Commandline options are merged into `params` after they are parsed, so
+ you can also access them via `params`.
+
+ Explanation of options saved in `params`:
+
+ - best_train_loss: Best training loss so far. It is used to select
+ the model that has the lowest training loss. It is
+ updated during the training.
+
+ - best_valid_loss: Best validation loss so far. It is used to select
+ the model that has the lowest validation loss. It is
+ updated during the training.
+
+ - best_train_epoch: It is the epoch that has the best training loss.
+
+ - best_valid_epoch: It is the epoch that has the best validation loss.
+
+ - batch_idx_train: Used to writing statistics to tensorboard. It
+ contains number of batches trained so far across
+ epochs.
+
+ - log_interval: Print training loss if batch_idx % log_interval` is 0
+
+ - reset_interval: Reset statistics if batch_idx % reset_interval is 0
+
+ - valid_interval: Run validation if batch_idx % valid_interval is 0
+
+ - feature_dim: The model input dim. It has to match the one used
+ in computing features.
+
+ - subsampling_factor: The subsampling factor for the model.
+
+ - use_feat_batchnorm: Whether to do batch normalization for the
+ input features.
+
+ - attention_dim: Hidden dim for multi-head attention model.
+
+ - head: Number of heads of multi-head attention model.
+
+ - num_decoder_layers: Number of decoder layer of transformer decoder.
+
+ - beam_size: It is used in k2.ctc_loss
+
+ - reduction: It is used in k2.ctc_loss
+
+ - use_double_scores: It is used in k2.ctc_loss
+
+ - weight_decay: The weight_decay for the optimizer.
+
+ - lr_factor: The lr_factor for Noam optimizer.
+
+ - warm_step: The warm_step for Noam optimizer.
+ """
+ params = AttributeDict(
+ {
+ "best_train_loss": float("inf"),
+ "best_valid_loss": float("inf"),
+ "best_train_epoch": -1,
+ "best_valid_epoch": -1,
+ "batch_idx_train": 0,
+ "log_interval": 50,
+ "reset_interval": 200,
+ "valid_interval": 3000,
+ # parameters for conformer
+ "feature_dim": 80,
+ "subsampling_factor": 4,
+ "use_feat_batchnorm": True,
+ "attention_dim": 512,
+ "nhead": 8,
+ "num_decoder_layers": 6,
+ # parameters for loss
+ "beam_size": 10,
+ "reduction": "sum",
+ "use_double_scores": True,
+ # parameters for Noam
+ "weight_decay": 1e-6,
+ "lr_factor": 5.0,
+ "warm_step": 80000,
+ "env_info": get_env_info(),
+ }
+ )
+
+ return params
+
+
+def load_checkpoint_if_available(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+) -> None:
+ """Load checkpoint from file.
+
+ If params.start_epoch is positive, it will load the checkpoint from
+ `params.start_epoch - 1`. Otherwise, this function does nothing.
+
+ Apart from loading state dict for `model`, `optimizer` and `scheduler`,
+ it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
+ and `best_valid_loss` in `params`.
+
+ Args:
+ params:
+ The return value of :func:`get_params`.
+ model:
+ The training model.
+ optimizer:
+ The optimizer that we are using.
+ scheduler:
+ The learning rate scheduler we are using.
+ Returns:
+ Return None.
+ """
+ if params.start_epoch <= 0:
+ return
+
+ filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
+ saved_params = load_checkpoint(
+ filename,
+ model=model,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ )
+
+ keys = [
+ "best_train_epoch",
+ "best_valid_epoch",
+ "batch_idx_train",
+ "best_train_loss",
+ "best_valid_loss",
+ ]
+ for k in keys:
+ params[k] = saved_params[k]
+
+ return saved_params
+
+
+def save_checkpoint(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: Optional[torch.optim.Optimizer] = None,
+ scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
+ rank: int = 0,
+) -> None:
+ """Save model, optimizer, scheduler and training stats to file.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The training model.
+ """
+ if rank != 0:
+ return
+ filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
+ save_checkpoint_impl(
+ filename=filename,
+ model=model,
+ params=params,
+ optimizer=optimizer,
+ scheduler=scheduler,
+ rank=rank,
+ )
+
+ if params.best_train_epoch == params.cur_epoch:
+ best_train_filename = params.exp_dir / "best-train-loss.pt"
+ copyfile(src=filename, dst=best_train_filename)
+
+ if params.best_valid_epoch == params.cur_epoch:
+ best_valid_filename = params.exp_dir / "best-valid-loss.pt"
+ copyfile(src=filename, dst=best_valid_filename)
+
+
+def compute_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ batch: dict,
+ graph_compiler: BpeCtcTrainingGraphCompiler,
+ is_training: bool,
+) -> Tuple[Tensor, MetricsTracker]:
+ """
+ Compute CTC loss given the model and its inputs.
+
+ Args:
+ params:
+ Parameters for training. See :func:`get_params`.
+ model:
+ The model for training. It is an instance of Conformer in our case.
+ batch:
+ A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
+ for the content in it.
+ graph_compiler:
+ It is used to build a decoding graph from a ctc topo and training
+ transcript. The training transcript is contained in the given `batch`,
+ while the ctc topo is built when this compiler is instantiated.
+ is_training:
+ True for training. False for validation. When it is True, this
+ function enables autograd during computation; when it is False, it
+ disables autograd.
+ """
+ device = graph_compiler.device
+ feature = batch["inputs"]
+ # at entry, feature is (N, T, C)
+ assert feature.ndim == 3
+ feature = feature.to(device)
+
+ supervisions = batch["supervisions"]
+ with torch.set_grad_enabled(is_training):
+ nnet_output, encoder_memory, memory_mask = model(
+ feature,
+ supervisions,
+ dynamic_chunk_training=params.dynamic_chunk_training,
+ short_chunk_proportion=params.short_chunk_proportion,
+ )
+ # nnet_output is (N, T, C)
+
+ # NOTE: We need `encode_supervisions` to sort sequences with
+ # different duration in decreasing order, required by
+ # `k2.intersect_dense` called in `k2.ctc_loss`
+ supervision_segments, texts = encode_supervisions(
+ supervisions, subsampling_factor=params.subsampling_factor
+ )
+
+ token_ids = graph_compiler.texts_to_ids(texts)
+
+ decoding_graph = graph_compiler.compile(token_ids)
+
+ dense_fsa_vec = k2.DenseFsaVec(
+ nnet_output,
+ supervision_segments,
+ allow_truncate=params.subsampling_factor - 1,
+ )
+
+ ctc_loss = k2.ctc_loss(
+ decoding_graph=decoding_graph,
+ dense_fsa_vec=dense_fsa_vec,
+ output_beam=params.beam_size,
+ reduction=params.reduction,
+ use_double_scores=params.use_double_scores,
+ )
+
+ if params.att_rate != 0.0:
+ with torch.set_grad_enabled(is_training):
+ mmodel = model.module if hasattr(model, "module") else model
+ # Note: We need to generate an unsorted version of token_ids
+ # `encode_supervisions()` called above sorts text, but
+ # encoder_memory and memory_mask are not sorted, so we
+ # use an unsorted version `supervisions["text"]` to regenerate
+ # the token_ids
+ #
+ # See https://github.com/k2-fsa/icefall/issues/97
+ # for more details
+ unsorted_token_ids = graph_compiler.texts_to_ids(
+ supervisions["text"]
+ )
+ att_loss = mmodel.decoder_forward(
+ encoder_memory,
+ memory_mask,
+ token_ids=unsorted_token_ids,
+ sos_id=graph_compiler.sos_id,
+ eos_id=graph_compiler.eos_id,
+ )
+ loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
+ else:
+ loss = ctc_loss
+ att_loss = torch.tensor([0])
+
+ assert loss.requires_grad == is_training
+
+ info = MetricsTracker()
+ info["frames"] = supervision_segments[:, 2].sum().item()
+ info["ctc_loss"] = ctc_loss.detach().cpu().item()
+ if params.att_rate != 0.0:
+ info["att_loss"] = att_loss.detach().cpu().item()
+
+ info["loss"] = loss.detach().cpu().item()
+
+ return loss, info
+
+
+def compute_validation_loss(
+ params: AttributeDict,
+ model: nn.Module,
+ graph_compiler: BpeCtcTrainingGraphCompiler,
+ valid_dl: torch.utils.data.DataLoader,
+ world_size: int = 1,
+) -> MetricsTracker:
+ """Run the validation process."""
+ model.eval()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(valid_dl):
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ batch=batch,
+ graph_compiler=graph_compiler,
+ is_training=False,
+ )
+ assert loss.requires_grad is False
+ tot_loss = tot_loss + loss_info
+
+ if world_size > 1:
+ tot_loss.reduce(loss.device)
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ if loss_value < params.best_valid_loss:
+ params.best_valid_epoch = params.cur_epoch
+ params.best_valid_loss = loss_value
+
+ return tot_loss
+
+
+def train_one_epoch(
+ params: AttributeDict,
+ model: nn.Module,
+ optimizer: torch.optim.Optimizer,
+ graph_compiler: BpeCtcTrainingGraphCompiler,
+ train_dl: torch.utils.data.DataLoader,
+ valid_dl: torch.utils.data.DataLoader,
+ tb_writer: Optional[SummaryWriter] = None,
+ world_size: int = 1,
+) -> None:
+ """Train the model for one epoch.
+
+ The training loss from the mean of all frames is saved in
+ `params.train_loss`. It runs the validation process every
+ `params.valid_interval` batches.
+
+ Args:
+ params:
+ It is returned by :func:`get_params`.
+ model:
+ The model for training.
+ optimizer:
+ The optimizer we are using.
+ graph_compiler:
+ It is used to convert transcripts to FSAs.
+ train_dl:
+ Dataloader for the training dataset.
+ valid_dl:
+ Dataloader for the validation dataset.
+ tb_writer:
+ Writer to write log messages to tensorboard.
+ world_size:
+ Number of nodes in DDP training. If it is 1, DDP is disabled.
+ """
+ model.train()
+
+ tot_loss = MetricsTracker()
+
+ for batch_idx, batch in enumerate(train_dl):
+ params.batch_idx_train += 1
+ batch_size = len(batch["supervisions"]["text"])
+
+ loss, loss_info = compute_loss(
+ params=params,
+ model=model,
+ batch=batch,
+ graph_compiler=graph_compiler,
+ is_training=True,
+ )
+ # summary stats
+ tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
+
+ # NOTE: We use reduction==sum and loss is computed over utterances
+ # in the batch and there is no normalization to it so far.
+
+ optimizer.zero_grad()
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+
+ if batch_idx % params.log_interval == 0:
+ logging.info(
+ f"Epoch {params.cur_epoch}, "
+ f"batch {batch_idx}, loss[{loss_info}], "
+ f"tot_loss[{tot_loss}], batch size: {batch_size}"
+ )
+
+ if batch_idx % params.log_interval == 0:
+
+ if tb_writer is not None:
+ loss_info.write_summary(
+ tb_writer, "train/current_", params.batch_idx_train
+ )
+ tot_loss.write_summary(
+ tb_writer, "train/tot_", params.batch_idx_train
+ )
+
+ if batch_idx > 0 and batch_idx % params.valid_interval == 0:
+ logging.info("Computing validation loss")
+ valid_info = compute_validation_loss(
+ params=params,
+ model=model,
+ graph_compiler=graph_compiler,
+ valid_dl=valid_dl,
+ world_size=world_size,
+ )
+ model.train()
+ logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
+ if tb_writer is not None:
+ valid_info.write_summary(
+ tb_writer, "train/valid_", params.batch_idx_train
+ )
+
+ loss_value = tot_loss["loss"] / tot_loss["frames"]
+ params.train_loss = loss_value
+ if params.train_loss < params.best_train_loss:
+ params.best_train_epoch = params.cur_epoch
+ params.best_train_loss = params.train_loss
+
+
+def run(rank, world_size, args):
+ """
+ Args:
+ rank:
+ It is a value between 0 and `world_size-1`, which is
+ passed automatically by `mp.spawn()` in :func:`main`.
+ The node with rank 0 is responsible for saving checkpoint.
+ world_size:
+ Number of GPUs for DDP training.
+ args:
+ The return value of get_parser().parse_args()
+ """
+ params = get_params()
+ params.update(vars(args))
+
+ fix_random_seed(42)
+ if world_size > 1:
+ setup_dist(rank, world_size, params.master_port)
+
+ setup_logger(f"{params.exp_dir}/log/log-train")
+ logging.info("Training started")
+ logging.info(params)
+
+ if args.tensorboard and rank == 0:
+ tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
+ else:
+ tb_writer = None
+
+ lexicon = Lexicon(params.lang_dir)
+ max_token_id = max(lexicon.tokens)
+ num_classes = max_token_id + 1 # +1 for the blank
+
+ device = torch.device("cpu")
+ if torch.cuda.is_available():
+ device = torch.device("cuda", rank)
+
+ graph_compiler = BpeCtcTrainingGraphCompiler(
+ params.lang_dir,
+ device=device,
+ sos_token="",
+ eos_token="",
+ )
+
+ logging.info("About to create model")
+ model = Conformer(
+ num_features=params.feature_dim,
+ nhead=params.nhead,
+ d_model=params.attention_dim,
+ num_classes=num_classes,
+ subsampling_factor=params.subsampling_factor,
+ num_decoder_layers=params.num_decoder_layers,
+ vgg_frontend=False,
+ use_feat_batchnorm=params.use_feat_batchnorm,
+ )
+
+ checkpoints = load_checkpoint_if_available(params=params, model=model)
+
+ model.to(device)
+ if world_size > 1:
+ model = DDP(model, device_ids=[rank])
+
+ optimizer = Noam(
+ model.parameters(),
+ model_size=params.attention_dim,
+ factor=params.lr_factor,
+ warm_step=params.warm_step,
+ weight_decay=params.weight_decay,
+ )
+
+ if checkpoints:
+ optimizer.load_state_dict(checkpoints["optimizer"])
+
+ librispeech = LibriSpeechAsrDataModule(args)
+ train_dl = librispeech.train_dataloaders()
+ valid_dl = librispeech.valid_dataloaders()
+
+ scan_pessimistic_batches_for_oom(
+ model=model,
+ train_dl=train_dl,
+ optimizer=optimizer,
+ graph_compiler=graph_compiler,
+ params=params,
+ )
+
+ for epoch in range(params.start_epoch, params.num_epochs):
+ train_dl.sampler.set_epoch(epoch)
+
+ cur_lr = optimizer._rate
+ if tb_writer is not None:
+ tb_writer.add_scalar(
+ "train/learning_rate", cur_lr, params.batch_idx_train
+ )
+ tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
+
+ if rank == 0:
+ logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
+
+ params.cur_epoch = epoch
+
+ train_one_epoch(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ graph_compiler=graph_compiler,
+ train_dl=train_dl,
+ valid_dl=valid_dl,
+ tb_writer=tb_writer,
+ world_size=world_size,
+ )
+
+ save_checkpoint(
+ params=params,
+ model=model,
+ optimizer=optimizer,
+ rank=rank,
+ )
+
+ logging.info("Done!")
+
+ if world_size > 1:
+ torch.distributed.barrier()
+ cleanup_dist()
+
+
+def scan_pessimistic_batches_for_oom(
+ model: nn.Module,
+ train_dl: torch.utils.data.DataLoader,
+ optimizer: torch.optim.Optimizer,
+ graph_compiler: BpeCtcTrainingGraphCompiler,
+ params: AttributeDict,
+):
+ from lhotse.dataset import find_pessimistic_batches
+
+ logging.info(
+ "Sanity check -- see if any of the batches in epoch 0 would cause OOM."
+ )
+ batches, crit_values = find_pessimistic_batches(train_dl.sampler)
+ for criterion, cuts in batches.items():
+ batch = train_dl.dataset[cuts]
+ try:
+ optimizer.zero_grad()
+ loss, _ = compute_loss(
+ params=params,
+ model=model,
+ batch=batch,
+ graph_compiler=graph_compiler,
+ is_training=True,
+ )
+ loss.backward()
+ clip_grad_norm_(model.parameters(), 5.0, 2.0)
+ optimizer.step()
+ except RuntimeError as e:
+ if "CUDA out of memory" in str(e):
+ logging.error(
+ "Your GPU ran out of memory with the current "
+ "max_duration setting. We recommend decreasing "
+ "max_duration and trying again.\n"
+ f"Failing criterion: {criterion} "
+ f"(={crit_values[criterion]}) ..."
+ )
+ raise
+
+
+def main():
+ parser = get_parser()
+ LibriSpeechAsrDataModule.add_arguments(parser)
+ args = parser.parse_args()
+ args.exp_dir = Path(args.exp_dir)
+ args.lang_dir = Path(args.lang_dir)
+
+ world_size = args.world_size
+ assert world_size >= 1
+ if world_size > 1:
+ mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
+ else:
+ run(rank=0, world_size=1, args=args)
+
+
+torch.set_num_threads(1)
+torch.set_num_interop_threads(1)
+
+if __name__ == "__main__":
+ main()
diff --git a/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py b/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py
new file mode 100644
index 000000000..bc78e4a41
--- /dev/null
+++ b/egs/librispeech/ASR/streaming_conformer_ctc/transformer.py
@@ -0,0 +1,966 @@
+# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
+#
+# See ../../../../LICENSE for clarification regarding multiple authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+import math
+from typing import Dict, List, Optional, Tuple
+
+import torch
+import torch.nn as nn
+from label_smoothing import LabelSmoothingLoss
+from subsampling import Conv2dSubsampling, VggSubsampling
+from torch.nn.utils.rnn import pad_sequence
+
+# Note: TorchScript requires Dict/List/etc. to be fully typed.
+Supervisions = Dict[str, torch.Tensor]
+
+
+class Transformer(nn.Module):
+ def __init__(
+ self,
+ num_features: int,
+ num_classes: int,
+ subsampling_factor: int = 4,
+ d_model: int = 256,
+ nhead: int = 4,
+ dim_feedforward: int = 2048,
+ num_encoder_layers: int = 12,
+ num_decoder_layers: int = 6,
+ dropout: float = 0.1,
+ normalize_before: bool = True,
+ vgg_frontend: bool = False,
+ use_feat_batchnorm: bool = False,
+ ) -> None:
+ """
+ Args:
+ num_features:
+ The input dimension of the model.
+ num_classes:
+ The output dimension of the model.
+ subsampling_factor:
+ Number of output frames is num_in_frames // subsampling_factor.
+ Currently, subsampling_factor MUST be 4.
+ d_model:
+ Attention dimension.
+ nhead:
+ Number of heads in multi-head attention.
+ Must satisfy d_model // nhead == 0.
+ dim_feedforward:
+ The output dimension of the feedforward layers in encoder/decoder.
+ num_encoder_layers:
+ Number of encoder layers.
+ num_decoder_layers:
+ Number of decoder layers.
+ dropout:
+ Dropout in encoder/decoder.
+ normalize_before:
+ If True, use pre-layer norm; False to use post-layer norm.
+ vgg_frontend:
+ True to use vgg style frontend for subsampling.
+ use_feat_batchnorm:
+ True to use batchnorm for the input layer.
+ """
+ super().__init__()
+ self.use_feat_batchnorm = use_feat_batchnorm
+ if use_feat_batchnorm:
+ self.feat_batchnorm = nn.BatchNorm1d(num_features)
+
+ self.num_features = num_features
+ self.num_classes = num_classes
+ self.subsampling_factor = subsampling_factor
+ if subsampling_factor != 4:
+ raise NotImplementedError("Support only 'subsampling_factor=4'.")
+
+ # self.encoder_embed converts the input of shape (N, T, num_classes)
+ # to the shape (N, T//subsampling_factor, d_model).
+ # That is, it does two things simultaneously:
+ # (1) subsampling: T -> T//subsampling_factor
+ # (2) embedding: num_classes -> d_model
+ if vgg_frontend:
+ self.encoder_embed = VggSubsampling(num_features, d_model)
+ else:
+ self.encoder_embed = Conv2dSubsampling(num_features, d_model)
+
+ self.encoder_pos = PositionalEncoding(d_model, dropout)
+
+ encoder_layer = TransformerEncoderLayer(
+ d_model=d_model,
+ nhead=nhead,
+ dim_feedforward=dim_feedforward,
+ dropout=dropout,
+ normalize_before=normalize_before,
+ )
+
+ if normalize_before:
+ encoder_norm = nn.LayerNorm(d_model)
+ else:
+ encoder_norm = None
+
+ self.encoder = nn.TransformerEncoder(
+ encoder_layer=encoder_layer,
+ num_layers=num_encoder_layers,
+ norm=encoder_norm,
+ )
+
+ # TODO(fangjun): remove dropout
+ self.encoder_output_layer = nn.Sequential(
+ nn.Dropout(p=dropout), nn.Linear(d_model, num_classes)
+ )
+
+ if num_decoder_layers > 0:
+ self.decoder_num_class = (
+ self.num_classes
+ ) # bpe model already has sos/eos symbol
+
+ self.decoder_embed = nn.Embedding(
+ num_embeddings=self.decoder_num_class, embedding_dim=d_model
+ )
+ self.decoder_pos = PositionalEncoding(d_model, dropout)
+
+ decoder_layer = TransformerDecoderLayer(
+ d_model=d_model,
+ nhead=nhead,
+ dim_feedforward=dim_feedforward,
+ dropout=dropout,
+ normalize_before=normalize_before,
+ )
+
+ if normalize_before:
+ decoder_norm = nn.LayerNorm(d_model)
+ else:
+ decoder_norm = None
+
+ self.decoder = nn.TransformerDecoder(
+ decoder_layer=decoder_layer,
+ num_layers=num_decoder_layers,
+ norm=decoder_norm,
+ )
+
+ self.decoder_output_layer = torch.nn.Linear(
+ d_model, self.decoder_num_class
+ )
+
+ self.decoder_criterion = LabelSmoothingLoss()
+ else:
+ self.decoder_criterion = None
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ supervision: Optional[Supervisions] = None,
+ dynamic_chunk_training: bool = False,
+ short_chunk_proportion: float = 0.5,
+ chunk_size: int = -1,
+ simulate_streaming=False,
+ ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
+ """
+ Args:
+ x:
+ The input tensor. Its shape is (N, T, C).
+ supervision:
+ Supervision in lhotse format.
+ See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
+ (CAUTION: It contains length information, i.e., start and number of
+ frames, before subsampling)
+
+ Returns:
+ Return a tuple containing 3 tensors:
+ - CTC output for ctc decoding. Its shape is (N, T, C)
+ - Encoder output with shape (T, N, C). It can be used as key and
+ value for the decoder.
+ - Encoder output padding mask. It can be used as
+ memory_key_padding_mask for the decoder. Its shape is (N, T).
+ It is None if `supervision` is None.
+ """
+ if self.use_feat_batchnorm:
+ x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
+ x = self.feat_batchnorm(x)
+ x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
+ encoder_memory, memory_key_padding_mask = self.run_encoder(
+ x,
+ supervision,
+ dynamic_chunk_training=dynamic_chunk_training,
+ short_chunk_proportion=short_chunk_proportion,
+ chunk_size=chunk_size,
+ simulate_streaming=simulate_streaming,
+ )
+ x = self.ctc_output(encoder_memory)
+ return x, encoder_memory, memory_key_padding_mask
+
+ def run_encoder(
+ self,
+ x: torch.Tensor,
+ supervisions: Optional[Supervisions] = None,
+ chunk_size: int = -1,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
+ """Run the transformer encoder.
+
+ Args:
+ x:
+ The model input. Its shape is (N, T, C).
+ supervisions:
+ Supervision in lhotse format.
+ See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
+ CAUTION: It contains length information, i.e., start and number of
+ frames, before subsampling
+ It is read directly from the batch, without any sorting. It is used
+ to compute the encoder padding mask, which is used as memory key
+ padding mask for the decoder.
+ chunk_size: right chunk_size to simulate streaming decoding
+ -1 for whole right context
+ Returns:
+ Return a tuple with two tensors:
+ - The encoder output, with shape (T, N, C)
+ - encoder padding mask, with shape (N, T).
+ The mask is None if `supervisions` is None.
+ It is used as memory key padding mask in the decoder.
+ """
+ # streaming decoding(chunk_size >= 0) is only verified with Conformer
+ assert chunk_size == -1
+ x = self.encoder_embed(x)
+ x = self.encoder_pos(x)
+ x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
+ mask = encoder_padding_mask(x.size(0), supervisions)
+ mask = mask.to(x.device) if mask is not None else None
+ x = self.encoder(
+ x, src_key_padding_mask=mask, chunk_size=chunk_size
+ ) # (T, N, C)
+
+ return x, mask
+
+ def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
+ """
+ Args:
+ x:
+ The output tensor from the transformer encoder.
+ Its shape is (T, N, C)
+
+ Returns:
+ Return a tensor that can be used for CTC decoding.
+ Its shape is (N, T, C)
+ """
+ x = self.encoder_output_layer(x)
+ x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
+ x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
+ return x
+
+ @torch.jit.export
+ def decoder_forward(
+ self,
+ memory: torch.Tensor,
+ memory_key_padding_mask: torch.Tensor,
+ token_ids: List[List[int]],
+ sos_id: int,
+ eos_id: int,
+ ) -> torch.Tensor:
+ """
+ Args:
+ memory:
+ It's the output of the encoder with shape (T, N, C)
+ memory_key_padding_mask:
+ The padding mask from the encoder.
+ token_ids:
+ A list-of-list IDs. Each sublist contains IDs for an utterance.
+ The IDs can be either phone IDs or word piece IDs.
+ sos_id:
+ sos token id
+ eos_id:
+ eos token id
+
+ Returns:
+ A scalar, the **sum** of label smoothing loss over utterances
+ in the batch without any normalization.
+ """
+ ys_in = add_sos(token_ids, sos_id=sos_id)
+ ys_in = [torch.tensor(y) for y in ys_in]
+ ys_in_pad = pad_sequence(
+ ys_in, batch_first=True, padding_value=float(eos_id)
+ )
+
+ ys_out = add_eos(token_ids, eos_id=eos_id)
+ ys_out = [torch.tensor(y) for y in ys_out]
+ ys_out_pad = pad_sequence(
+ ys_out, batch_first=True, padding_value=float(-1)
+ )
+
+ device = memory.device
+ ys_in_pad = ys_in_pad.to(device)
+ ys_out_pad = ys_out_pad.to(device)
+
+ tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
+ device
+ )
+
+ tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
+ # TODO: Use length information to create the decoder padding mask
+ # We set the first column to False since the first column in ys_in_pad
+ # contains sos_id, which is the same as eos_id in our current setting.
+ tgt_key_padding_mask[:, 0] = False
+
+ tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
+ tgt = self.decoder_pos(tgt)
+ tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
+ pred_pad = self.decoder(
+ tgt=tgt,
+ memory=memory,
+ tgt_mask=tgt_mask,
+ tgt_key_padding_mask=tgt_key_padding_mask,
+ memory_key_padding_mask=memory_key_padding_mask,
+ ) # (T, N, C)
+ pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
+ pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
+
+ decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
+
+ return decoder_loss
+
+ @torch.jit.export
+ def decoder_nll(
+ self,
+ memory: torch.Tensor,
+ memory_key_padding_mask: torch.Tensor,
+ token_ids: List[torch.Tensor],
+ sos_id: int,
+ eos_id: int,
+ ) -> torch.Tensor:
+ """
+ Args:
+ memory:
+ It's the output of the encoder with shape (T, N, C)
+ memory_key_padding_mask:
+ The padding mask from the encoder.
+ token_ids:
+ A list-of-list IDs (e.g., word piece IDs).
+ Each sublist represents an utterance.
+ sos_id:
+ The token ID for SOS.
+ eos_id:
+ The token ID for EOS.
+ Returns:
+ A 2-D tensor of shape (len(token_ids), max_token_length)
+ representing the cross entropy loss (i.e., negative log-likelihood).
+ """
+ # The common part between this function and decoder_forward could be
+ # extracted as a separate function.
+ if isinstance(token_ids[0], torch.Tensor):
+ # This branch is executed by torchscript in C++.
+ # See https://github.com/k2-fsa/k2/pull/870
+ # https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
+ token_ids = [tolist(t) for t in token_ids]
+
+ ys_in = add_sos(token_ids, sos_id=sos_id)
+ ys_in = [torch.tensor(y) for y in ys_in]
+ ys_in_pad = pad_sequence(
+ ys_in, batch_first=True, padding_value=float(eos_id)
+ )
+
+ ys_out = add_eos(token_ids, eos_id=eos_id)
+ ys_out = [torch.tensor(y) for y in ys_out]
+ ys_out_pad = pad_sequence(
+ ys_out, batch_first=True, padding_value=float(-1)
+ )
+
+ device = memory.device
+ ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
+ ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
+
+ tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
+ device
+ )
+
+ tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
+ # TODO: Use length information to create the decoder padding mask
+ # We set the first column to False since the first column in ys_in_pad
+ # contains sos_id, which is the same as eos_id in our current setting.
+ tgt_key_padding_mask[:, 0] = False
+
+ tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
+ tgt = self.decoder_pos(tgt)
+ tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
+ pred_pad = self.decoder(
+ tgt=tgt,
+ memory=memory,
+ tgt_mask=tgt_mask,
+ tgt_key_padding_mask=tgt_key_padding_mask,
+ memory_key_padding_mask=memory_key_padding_mask,
+ ) # (T, B, F)
+ pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
+ pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
+ # nll: negative log-likelihood
+ nll = torch.nn.functional.cross_entropy(
+ pred_pad.view(-1, self.decoder_num_class),
+ ys_out_pad.view(-1),
+ ignore_index=-1,
+ reduction="none",
+ )
+
+ nll = nll.view(pred_pad.shape[0], -1)
+
+ return nll
+
+
+class TransformerEncoderLayer(nn.Module):
+ """
+ Modified from torch.nn.TransformerEncoderLayer.
+ Add support of normalize_before,
+ i.e., use layer_norm before the first block.
+
+ Args:
+ d_model:
+ the number of expected features in the input (required).
+ nhead:
+ the number of heads in the multiheadattention models (required).
+ dim_feedforward:
+ the dimension of the feedforward network model (default=2048).
+ dropout:
+ the dropout value (default=0.1).
+ activation:
+ the activation function of intermediate layer, relu or
+ gelu (default=relu).
+ normalize_before:
+ whether to use layer_norm before the first block.
+
+ Examples::
+ >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
+ >>> src = torch.rand(10, 32, 512)
+ >>> out = encoder_layer(src)
+ """
+
+ def __init__(
+ self,
+ d_model: int,
+ nhead: int,
+ dim_feedforward: int = 2048,
+ dropout: float = 0.1,
+ activation: str = "relu",
+ normalize_before: bool = True,
+ ) -> None:
+ super(TransformerEncoderLayer, self).__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm1 = nn.LayerNorm(d_model)
+ self.norm2 = nn.LayerNorm(d_model)
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+
+ self.normalize_before = normalize_before
+
+ def __setstate__(self, state):
+ if "activation" not in state:
+ state["activation"] = nn.functional.relu
+ super(TransformerEncoderLayer, self).__setstate__(state)
+
+ def forward(
+ self,
+ src: torch.Tensor,
+ src_mask: Optional[torch.Tensor] = None,
+ src_key_padding_mask: Optional[torch.Tensor] = None,
+ ) -> torch.Tensor:
+ """
+ Pass the input through the encoder layer.
+
+ Args:
+ src: the sequence to the encoder layer (required).
+ src_mask: the mask for the src sequence (optional).
+ src_key_padding_mask: the mask for the src keys per batch (optional)
+
+ Shape:
+ src: (S, N, E).
+ src_mask: (S, S).
+ src_key_padding_mask: (N, S).
+ S is the source sequence length, T is the target sequence length,
+ N is the batch size, E is the feature number
+ """
+ residual = src
+ if self.normalize_before:
+ src = self.norm1(src)
+ src2 = self.self_attn(
+ src,
+ src,
+ src,
+ attn_mask=src_mask,
+ key_padding_mask=src_key_padding_mask,
+ )[0]
+ src = residual + self.dropout1(src2)
+ if not self.normalize_before:
+ src = self.norm1(src)
+
+ residual = src
+ if self.normalize_before:
+ src = self.norm2(src)
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
+ src = residual + self.dropout2(src2)
+ if not self.normalize_before:
+ src = self.norm2(src)
+ return src
+
+
+class TransformerDecoderLayer(nn.Module):
+ """
+ Modified from torch.nn.TransformerDecoderLayer.
+ Add support of normalize_before,
+ i.e., use layer_norm before the first block.
+
+ Args:
+ d_model:
+ the number of expected features in the input (required).
+ nhead:
+ the number of heads in the multiheadattention models (required).
+ dim_feedforward:
+ the dimension of the feedforward network model (default=2048).
+ dropout:
+ the dropout value (default=0.1).
+ activation:
+ the activation function of intermediate layer, relu or
+ gelu (default=relu).
+
+ Examples::
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
+ >>> memory = torch.rand(10, 32, 512)
+ >>> tgt = torch.rand(20, 32, 512)
+ >>> out = decoder_layer(tgt, memory)
+ """
+
+ def __init__(
+ self,
+ d_model: int,
+ nhead: int,
+ dim_feedforward: int = 2048,
+ dropout: float = 0.1,
+ activation: str = "relu",
+ normalize_before: bool = True,
+ ) -> None:
+ super(TransformerDecoderLayer, self).__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
+ self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm1 = nn.LayerNorm(d_model)
+ self.norm2 = nn.LayerNorm(d_model)
+ self.norm3 = nn.LayerNorm(d_model)
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(dropout)
+ self.dropout3 = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+
+ self.normalize_before = normalize_before
+
+ def __setstate__(self, state):
+ if "activation" not in state:
+ state["activation"] = nn.functional.relu
+ super(TransformerDecoderLayer, self).__setstate__(state)
+
+ def forward(
+ self,
+ tgt: torch.Tensor,
+ memory: torch.Tensor,
+ tgt_mask: Optional[torch.Tensor] = None,
+ memory_mask: Optional[torch.Tensor] = None,
+ tgt_key_padding_mask: Optional[torch.Tensor] = None,
+ memory_key_padding_mask: Optional[torch.Tensor] = None,
+ ) -> torch.Tensor:
+ """Pass the inputs (and mask) through the decoder layer.
+
+ Args:
+ tgt:
+ the sequence to the decoder layer (required).
+ memory:
+ the sequence from the last layer of the encoder (required).
+ tgt_mask:
+ the mask for the tgt sequence (optional).
+ memory_mask:
+ the mask for the memory sequence (optional).
+ tgt_key_padding_mask:
+ the mask for the tgt keys per batch (optional).
+ memory_key_padding_mask:
+ the mask for the memory keys per batch (optional).
+
+ Shape:
+ tgt: (T, N, E).
+ memory: (S, N, E).
+ tgt_mask: (T, T).
+ memory_mask: (T, S).
+ tgt_key_padding_mask: (N, T).
+ memory_key_padding_mask: (N, S).
+ S is the source sequence length, T is the target sequence length,
+ N is the batch size, E is the feature number
+ """
+ residual = tgt
+ if self.normalize_before:
+ tgt = self.norm1(tgt)
+ tgt2 = self.self_attn(
+ tgt,
+ tgt,
+ tgt,
+ attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask,
+ )[0]
+ tgt = residual + self.dropout1(tgt2)
+ if not self.normalize_before:
+ tgt = self.norm1(tgt)
+
+ residual = tgt
+ if self.normalize_before:
+ tgt = self.norm2(tgt)
+ tgt2 = self.src_attn(
+ tgt,
+ memory,
+ memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )[0]
+ tgt = residual + self.dropout2(tgt2)
+ if not self.normalize_before:
+ tgt = self.norm2(tgt)
+
+ residual = tgt
+ if self.normalize_before:
+ tgt = self.norm3(tgt)
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+ tgt = residual + self.dropout3(tgt2)
+ if not self.normalize_before:
+ tgt = self.norm3(tgt)
+ return tgt
+
+
+def _get_activation_fn(activation: str):
+ if activation == "relu":
+ return nn.functional.relu
+ elif activation == "gelu":
+ return nn.functional.gelu
+
+ raise RuntimeError(
+ "activation should be relu/gelu, not {}".format(activation)
+ )
+
+
+class PositionalEncoding(nn.Module):
+ """This class implements the positional encoding
+ proposed in the following paper:
+
+ - Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
+
+ PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
+ PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
+
+ Note::
+
+ 1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
+ = exp(-1* 2i / d_model * log(100000))
+ = exp(2i * -(log(10000) / d_model))
+ """
+
+ def __init__(self, d_model: int, dropout: float = 0.1) -> None:
+ """
+ Args:
+ d_model:
+ Embedding dimension.
+ dropout:
+ Dropout probability to be applied to the output of this module.
+ """
+ super().__init__()
+ self.d_model = d_model
+ self.xscale = math.sqrt(self.d_model)
+ self.dropout = nn.Dropout(p=dropout)
+ # not doing: self.pe = None because of errors thrown by torchscript
+ self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
+
+ def extend_pe(self, x: torch.Tensor) -> None:
+ """Extend the time t in the positional encoding if required.
+
+ The shape of `self.pe` is (1, T1, d_model). The shape of the input x
+ is (N, T, d_model). If T > T1, then we change the shape of self.pe
+ to (N, T, d_model). Otherwise, nothing is done.
+
+ Args:
+ x:
+ It is a tensor of shape (N, T, C).
+ Returns:
+ Return None.
+ """
+ if self.pe is not None:
+ if self.pe.size(1) >= x.size(1):
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+ return
+ pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
+ position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
+ div_term = torch.exp(
+ torch.arange(0, self.d_model, 2, dtype=torch.float32)
+ * -(math.log(10000.0) / self.d_model)
+ )
+ pe[:, 0::2] = torch.sin(position * div_term)
+ pe[:, 1::2] = torch.cos(position * div_term)
+ pe = pe.unsqueeze(0)
+ # Now pe is of shape (1, T, d_model), where T is x.size(1)
+ self.pe = pe.to(device=x.device, dtype=x.dtype)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ """
+ Add positional encoding.
+
+ Args:
+ x:
+ Its shape is (N, T, C)
+
+ Returns:
+ Return a tensor of shape (N, T, C)
+ """
+ self.extend_pe(x)
+ x = x * self.xscale + self.pe[:, : x.size(1), :]
+ return self.dropout(x)
+
+
+class Noam(object):
+ """
+ Implements Noam optimizer.
+
+ Proposed in
+ "Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
+
+ Modified from
+ https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
+
+ Args:
+ params:
+ iterable of parameters to optimize or dicts defining parameter groups
+ model_size:
+ attention dimension of the transformer model
+ factor:
+ learning rate factor
+ warm_step:
+ warmup steps
+ """
+
+ def __init__(
+ self,
+ params,
+ model_size: int = 256,
+ factor: float = 10.0,
+ warm_step: int = 25000,
+ weight_decay=0,
+ ) -> None:
+ """Construct an Noam object."""
+ self.optimizer = torch.optim.Adam(
+ params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
+ )
+ self._step = 0
+ self.warmup = warm_step
+ self.factor = factor
+ self.model_size = model_size
+ self._rate = 0
+
+ @property
+ def param_groups(self):
+ """Return param_groups."""
+ return self.optimizer.param_groups
+
+ def step(self):
+ """Update parameters and rate."""
+ self._step += 1
+ rate = self.rate()
+ for p in self.optimizer.param_groups:
+ p["lr"] = rate
+ self._rate = rate
+ self.optimizer.step()
+
+ def rate(self, step=None):
+ """Implement `lrate` above."""
+ if step is None:
+ step = self._step
+ return (
+ self.factor
+ * self.model_size ** (-0.5)
+ * min(step ** (-0.5), step * self.warmup ** (-1.5))
+ )
+
+ def zero_grad(self):
+ """Reset gradient."""
+ self.optimizer.zero_grad()
+
+ def state_dict(self):
+ """Return state_dict."""
+ return {
+ "_step": self._step,
+ "warmup": self.warmup,
+ "factor": self.factor,
+ "model_size": self.model_size,
+ "_rate": self._rate,
+ "optimizer": self.optimizer.state_dict(),
+ }
+
+ def load_state_dict(self, state_dict):
+ """Load state_dict."""
+ for key, value in state_dict.items():
+ if key == "optimizer":
+ self.optimizer.load_state_dict(state_dict["optimizer"])
+ else:
+ setattr(self, key, value)
+
+
+def encoder_padding_mask(
+ max_len: int, supervisions: Optional[Supervisions] = None
+) -> Optional[torch.Tensor]:
+ """Make mask tensor containing indexes of padded part.
+
+ TODO::
+ This function **assumes** that the model uses
+ a subsampling factor of 4. We should remove that
+ assumption later.
+
+ Args:
+ max_len:
+ Maximum length of input features.
+ CAUTION: It is the length after subsampling.
+ supervisions:
+ Supervision in lhotse format.
+ See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
+ (CAUTION: It contains length information, i.e., start and number of
+ frames, before subsampling)
+
+ Returns:
+ Tensor: Mask tensor of dimension (batch_size, input_length),
+ True denote the masked indices.
+ """
+ if supervisions is None:
+ return None
+
+ supervision_segments = torch.stack(
+ (
+ supervisions["sequence_idx"],
+ supervisions["start_frame"],
+ supervisions["num_frames"],
+ ),
+ 1,
+ ).to(torch.int32)
+
+ lengths = [
+ 0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
+ ]
+ for idx in range(supervision_segments.size(0)):
+ # Note: TorchScript doesn't allow to unpack tensors as tuples
+ sequence_idx = supervision_segments[idx, 0].item()
+ start_frame = supervision_segments[idx, 1].item()
+ num_frames = supervision_segments[idx, 2].item()
+ lengths[sequence_idx] = start_frame + num_frames
+
+ lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
+ bs = int(len(lengths))
+ seq_range = torch.arange(0, max_len, dtype=torch.int64)
+ seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
+ # Note: TorchScript doesn't implement Tensor.new()
+ seq_length_expand = torch.tensor(
+ lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
+ ).unsqueeze(-1)
+ mask = seq_range_expand >= seq_length_expand
+
+ return mask
+
+
+def decoder_padding_mask(
+ ys_pad: torch.Tensor, ignore_id: int = -1
+) -> torch.Tensor:
+ """Generate a length mask for input.
+
+ The masked position are filled with True,
+ Unmasked positions are filled with False.
+
+ Args:
+ ys_pad:
+ padded tensor of dimension (batch_size, input_length).
+ ignore_id:
+ the ignored number (the padding number) in ys_pad
+
+ Returns:
+ Tensor:
+ a bool tensor of the same shape as the input tensor.
+ """
+ ys_mask = ys_pad == ignore_id
+ return ys_mask
+
+
+def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
+ """Generate a square mask for the sequence. The masked positions are
+ filled with float('-inf'). Unmasked positions are filled with float(0.0).
+ The mask can be used for masked self-attention.
+
+ For instance, if sz is 3, it returns::
+
+ tensor([[0., -inf, -inf],
+ [0., 0., -inf],
+ [0., 0., 0]])
+
+ Args:
+ sz: mask size
+
+ Returns:
+ A square mask of dimension (sz, sz)
+ """
+ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
+ mask = (
+ mask.float()
+ .masked_fill(mask == 0, float("-inf"))
+ .masked_fill(mask == 1, float(0.0))
+ )
+ return mask
+
+
+def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
+ """Prepend sos_id to each utterance.
+
+ Args:
+ token_ids:
+ A list-of-list of token IDs. Each sublist contains
+ token IDs (e.g., word piece IDs) of an utterance.
+ sos_id:
+ The ID of the SOS token.
+
+ Return:
+ Return a new list-of-list, where each sublist starts
+ with SOS ID.
+ """
+ return [[sos_id] + utt for utt in token_ids]
+
+
+def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
+ """Append eos_id to each utterance.
+
+ Args:
+ token_ids:
+ A list-of-list of token IDs. Each sublist contains
+ token IDs (e.g., word piece IDs) of an utterance.
+ eos_id:
+ The ID of the EOS token.
+
+ Return:
+ Return a new list-of-list, where each sublist ends
+ with EOS ID.
+ """
+ return [utt + [eos_id] for utt in token_ids]
+
+
+def tolist(t: torch.Tensor) -> List[int]:
+ """Used by jit"""
+ return torch.jit.annotate(List[int], t.tolist())