add /chunk route
This commit is contained in:
parent
2c4a59f84b
commit
6086ddf818
@ -8,6 +8,7 @@ import logging
|
||||
import shutil
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from uuid import UUID
|
||||
|
||||
from fastapi import APIRouter, FastAPI, File, Form, HTTPException, UploadFile, status
|
||||
@ -28,7 +29,7 @@ from .api_schemas import (
|
||||
DocumentListResponse,
|
||||
DocumentResponse,
|
||||
ExtractAndChunkRequest,
|
||||
ExtractAndChunkResponse,
|
||||
ChunkListResponse,
|
||||
HealthCheckResponse,
|
||||
ProcessDocumentRequest,
|
||||
ProcessDocumentResponse,
|
||||
@ -160,6 +161,149 @@ def _map_domain_exception(exception: DomainException) -> HTTPException:
|
||||
)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/chunk",
|
||||
response_model=ChunkListResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
summary="Process Markdown from file upload or text input",
|
||||
description="Unified endpoint: upload .md file or paste markdown text, then parse and chunk",
|
||||
)
|
||||
async def perform_chunking(
|
||||
file: Optional[UploadFile] = File(None, description="Markdown file (.md) to upload"),
|
||||
text: Optional[str] = Form(None, description="Markdown text to process", json_schema_extra={"x-textarea": True}),
|
||||
strategy_name: ChunkingMethod = Form(..., description="Chunking method"),
|
||||
chunk_size: int = Form(..., description="Target chunk size in characters", ge=1, le=10000),
|
||||
overlap_size: int = Form(0, description="Overlap between chunks", ge=0),
|
||||
respect_boundaries: bool = Form(True, description="Respect text boundaries"),
|
||||
title: str = Form("markdown_input", description="Optional title for the document"),
|
||||
) -> ChunkListResponse:
|
||||
"""
|
||||
Unified Markdown processing endpoint supporting both file upload and text input.
|
||||
|
||||
This endpoint handles Markdown from either source:
|
||||
1. **File Upload**: Upload a .md file
|
||||
2. **Text Input**: Paste markdown text directly
|
||||
|
||||
Processing workflow:
|
||||
1. Validates source (file or text, not both)
|
||||
2. Extracts markdown content
|
||||
3. Parses markdown structure into sections
|
||||
4. Persists document to repository
|
||||
5. Chunks content according to strategy
|
||||
6. Returns chunks with metadata
|
||||
|
||||
Args:
|
||||
file: Optional .md file upload
|
||||
text: Optional markdown text input
|
||||
strategy_name: Chunking method (fixed_size or paragraph)
|
||||
chunk_size: Target chunk size
|
||||
overlap_size: Overlap between chunks
|
||||
respect_boundaries: Whether to respect boundaries
|
||||
title: Optional title for the document
|
||||
|
||||
Returns:
|
||||
Response with chunks
|
||||
|
||||
Raises:
|
||||
HTTPException: If validation fails or processing fails
|
||||
"""
|
||||
temp_file_path = None
|
||||
|
||||
try:
|
||||
# Validation: Ensure exactly one source is provided
|
||||
if not file and not text:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="Either 'file' or 'text' must be provided",
|
||||
)
|
||||
|
||||
if file and text:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="Provide either 'file' or 'text', not both",
|
||||
)
|
||||
|
||||
# Get service from bootstrap
|
||||
service: ITextProcessor = _get_service()
|
||||
|
||||
# Create chunking strategy
|
||||
strategy = ChunkingStrategy(
|
||||
strategy_name=strategy_name,
|
||||
chunk_size=chunk_size,
|
||||
overlap_size=overlap_size,
|
||||
respect_boundaries=respect_boundaries,
|
||||
)
|
||||
|
||||
# File Logic: Delegate to extract_and_chunk via MarkdownExtractor
|
||||
if file is not None:
|
||||
# Validate file extension
|
||||
if not file.filename or not file.filename.lower().endswith('.md'):
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="Unsupported file type. Only .md files are accepted",
|
||||
)
|
||||
|
||||
# Create temporary directory and file with original filename
|
||||
temp_dir = tempfile.mkdtemp()
|
||||
temp_file_path = Path(temp_dir) / file.filename
|
||||
|
||||
# Save uploaded file to temporary location
|
||||
logger.info(f"Processing uploaded markdown file: {file.filename}")
|
||||
with open(temp_file_path, 'wb') as temp_file:
|
||||
shutil.copyfileobj(file.file, temp_file)
|
||||
|
||||
# Delegate to extract_and_chunk (uses MarkdownExtractor)
|
||||
chunks = service.extract_and_chunk(temp_file_path, strategy)
|
||||
|
||||
# Text Logic: Process text directly
|
||||
else:
|
||||
logger.info("Processing markdown text input")
|
||||
|
||||
# Validate content is not empty
|
||||
if not text or not text.strip():
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="Markdown content cannot be empty",
|
||||
)
|
||||
|
||||
# Process text through service
|
||||
chunks = service.process_text_to_chunks(
|
||||
text=text,
|
||||
chunking_strategy=strategy,
|
||||
title=title,
|
||||
)
|
||||
|
||||
# Convert to response
|
||||
chunk_responses = [_to_chunk_response(c) for c in chunks]
|
||||
|
||||
logger.info(f"Successfully processed markdown: {len(chunks)} chunks created")
|
||||
|
||||
return ChunkListResponse(
|
||||
chunks=chunk_responses,
|
||||
total_chunks=len(chunk_responses),
|
||||
)
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except DomainException as e:
|
||||
raise _map_domain_exception(e)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error processing markdown: {str(e)}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=f"Internal server error: {str(e)}",
|
||||
)
|
||||
finally:
|
||||
# Clean up temporary file and directory if file was uploaded
|
||||
if temp_file_path and temp_file_path.exists():
|
||||
try:
|
||||
temp_dir = temp_file_path.parent
|
||||
shutil.rmtree(temp_dir)
|
||||
logger.debug(f"Cleaned up temporary directory: {temp_dir}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete temporary directory: {str(e)}")
|
||||
|
||||
|
||||
@router.post(
|
||||
"/extract",
|
||||
response_model=DocumentResponse,
|
||||
@ -234,7 +378,7 @@ async def extract_document(
|
||||
|
||||
@router.post(
|
||||
"/process-file",
|
||||
response_model=ExtractAndChunkResponse,
|
||||
response_model=ChunkListResponse,
|
||||
status_code=status.HTTP_200_OK,
|
||||
summary="Process uploaded file (extraction to chunking)",
|
||||
description="Upload a file, extract text, parse markdown, and return chunks",
|
||||
@ -245,7 +389,7 @@ async def process_file(
|
||||
chunk_size: int = Form(..., description="Target chunk size in characters", ge=1, le=10000),
|
||||
overlap_size: int = Form(0, description="Overlap between chunks", ge=0),
|
||||
respect_boundaries: bool = Form(True, description="Respect text boundaries"),
|
||||
) -> ExtractAndChunkResponse:
|
||||
) -> ChunkListResponse:
|
||||
"""
|
||||
Complete file processing pipeline: Upload → Extract → Parse → Chunk.
|
||||
|
||||
@ -301,7 +445,7 @@ async def process_file(
|
||||
|
||||
logger.info(f"Successfully processed {file.filename}: {len(chunks)} chunks created")
|
||||
|
||||
return ExtractAndChunkResponse(
|
||||
return ChunkListResponse(
|
||||
chunks=chunk_responses,
|
||||
total_chunks=len(chunk_responses),
|
||||
)
|
||||
@ -342,7 +486,7 @@ async def health_check() -> HealthCheckResponse:
|
||||
return HealthCheckResponse(
|
||||
status="healthy",
|
||||
version="1.0.0",
|
||||
supported_file_types=["pdf", "docx", "txt", "zip"],
|
||||
supported_file_types=["pdf", "docx", "txt", "md", "markdown", "zip"],
|
||||
available_strategies=["fixed_size", "paragraph"],
|
||||
)
|
||||
|
||||
|
||||
@ -109,12 +109,12 @@ class ProcessDocumentResponse(BaseModel):
|
||||
message: str = Field(default="Document processed successfully")
|
||||
|
||||
|
||||
class ExtractAndChunkResponse(BaseModel):
|
||||
class ChunkListResponse(BaseModel):
|
||||
"""Response model for extract and chunk operation."""
|
||||
|
||||
chunks: List[ChunkResponse]
|
||||
total_chunks: int
|
||||
message: str = Field(default="Document extracted and chunked successfully")
|
||||
message: str = Field(default="Document chunked successfully")
|
||||
|
||||
|
||||
class DocumentListResponse(BaseModel):
|
||||
|
||||
@ -15,6 +15,7 @@ from .adapters.outgoing.chunkers.fixed_size_chunker import FixedSizeChunker
|
||||
from .adapters.outgoing.chunkers.paragraph_chunker import ParagraphChunker
|
||||
from .adapters.outgoing.extractors.docx_extractor import DocxExtractor
|
||||
from .adapters.outgoing.extractors.factory import ExtractorFactory
|
||||
from .adapters.outgoing.extractors.markdown_extractor import MarkdownExtractor
|
||||
from .adapters.outgoing.extractors.pdf_extractor import PDFExtractor
|
||||
from .adapters.outgoing.extractors.txt_extractor import TxtExtractor
|
||||
from .adapters.outgoing.extractors.zip_extractor import ZipExtractor
|
||||
@ -100,6 +101,7 @@ class ApplicationContainer:
|
||||
factory.register_extractor(PDFExtractor())
|
||||
factory.register_extractor(DocxExtractor())
|
||||
factory.register_extractor(TxtExtractor())
|
||||
factory.register_extractor(MarkdownExtractor())
|
||||
factory.register_extractor(ZipExtractor())
|
||||
|
||||
logger.info(
|
||||
|
||||
@ -17,6 +17,7 @@ class SourceType(str, Enum):
|
||||
"""Enumeration of supported source types."""
|
||||
FILE = "file"
|
||||
WEB = "web"
|
||||
TEXT = "text"
|
||||
|
||||
|
||||
class ChunkingMethod(str, Enum):
|
||||
|
||||
@ -20,29 +20,6 @@ class ITextProcessor(ABC):
|
||||
the entry point into the core domain logic.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def process_document(
|
||||
self,
|
||||
file_path: Path,
|
||||
chunking_strategy: ChunkingStrategy,
|
||||
) -> Document:
|
||||
"""
|
||||
Process a document by extracting text and storing it.
|
||||
|
||||
Args:
|
||||
file_path: Path to the document file
|
||||
chunking_strategy: Strategy configuration for chunking
|
||||
|
||||
Returns:
|
||||
Processed Document entity
|
||||
|
||||
Raises:
|
||||
ExtractionError: If text extraction fails
|
||||
ProcessingError: If document processing fails
|
||||
UnsupportedFileTypeError: If file type is not supported
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def extract_and_chunk(
|
||||
self,
|
||||
|
||||
@ -53,71 +53,6 @@ class DocumentProcessorService(ITextProcessor):
|
||||
self._repository = repository
|
||||
logger.info("DocumentProcessorService initialized")
|
||||
|
||||
def process_document(
|
||||
self,
|
||||
file_path: Path,
|
||||
chunking_strategy: ChunkingStrategy,
|
||||
) -> Document:
|
||||
"""
|
||||
Process a document using the stateless pipeline.
|
||||
|
||||
Pipeline Order:
|
||||
1. Extract Document with raw_markdown and metadata (via Adapter)
|
||||
2. Parse Markdown into DocumentSection objects
|
||||
3. Update Document with sections
|
||||
4. Validate and persist Document
|
||||
5. Mark as processed
|
||||
|
||||
Args:
|
||||
file_path: Path to the document file
|
||||
chunking_strategy: Strategy configuration (for metadata)
|
||||
|
||||
Returns:
|
||||
Fully processed Document entity
|
||||
|
||||
Raises:
|
||||
ExtractionError: If text extraction fails
|
||||
ProcessingError: If document processing fails
|
||||
UnsupportedFileTypeError: If file type is not supported
|
||||
"""
|
||||
try:
|
||||
logger.info(f"Processing document: {file_path}")
|
||||
|
||||
# Step 1: Extract Document with raw_markdown and metadata
|
||||
document = self._extract_document(file_path)
|
||||
|
||||
# Step 2: Parse Markdown into structured sections
|
||||
sections = parse_markdown(document.raw_markdown)
|
||||
logger.debug(f"Parsed {len(sections)} sections from document")
|
||||
|
||||
# Step 3: Update Document with sections
|
||||
document = document.model_copy(update={"sections": sections})
|
||||
|
||||
# Step 4: Validate document content
|
||||
document.validate_content()
|
||||
|
||||
# Step 5: Persist to repository
|
||||
saved_document = self._repository.save(document)
|
||||
|
||||
# Step 6: Mark as processed
|
||||
saved_document.mark_as_processed()
|
||||
self._repository.save(saved_document)
|
||||
|
||||
logger.info(
|
||||
f"Document processed successfully: {saved_document.id} "
|
||||
f"({len(sections)} sections)"
|
||||
)
|
||||
return saved_document
|
||||
|
||||
except ExtractionError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process document: {str(e)}")
|
||||
raise ProcessingError(
|
||||
message="Document processing failed",
|
||||
details=str(e),
|
||||
)
|
||||
|
||||
def extract_and_chunk(
|
||||
self,
|
||||
file_path: Path,
|
||||
@ -260,7 +195,7 @@ class DocumentProcessorService(ITextProcessor):
|
||||
|
||||
metadata = DocumentMetadata(
|
||||
source_id="text_input",
|
||||
source_type=SourceType.WEB, # Using WEB type for text input
|
||||
source_type=SourceType.TEXT,
|
||||
display_name=f"{title}.md",
|
||||
size_bytes=len(text.encode('utf-8')),
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user