import numpy as np import tritonclient.http as httpclient # Connect to Triton client = httpclient.InferenceServerClient(url="localhost:8089") # Prepare dummy input image (e.g., normalized float32 [0,1]) input_data = np.random.rand(1, 3, 160, 160).astype(np.float32) # Create Triton input input_tensor = httpclient.InferInput("input", input_data.shape, "FP32") input_tensor.set_data_from_numpy(input_data) # Declare expected outputs output_names = ["embedding", "bbox", "score", "landmarks"] output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names] # Send inference request response = client.infer( model_name="face_recognition", inputs=[input_tensor], outputs=output_tensors ) # Parse and print outputs for name in output_names: output = response.as_numpy(name) print(f"{name}: shape={output.shape}, dtype={output.dtype}") print(output)