Recator draw imprecise face
This commit is contained in:
parent
65b8f9b9a8
commit
3b9ff27524
@ -248,79 +248,82 @@ GstPadProbeReturn NvInferServerManager::pgie_pad_buffer_probe(
|
|||||||
NvDsUserMeta *user_meta = (NvDsUserMeta *)l_user->data;
|
NvDsUserMeta *user_meta = (NvDsUserMeta *)l_user->data;
|
||||||
if (user_meta->base_meta.meta_type != NVDSINFER_TENSOR_OUTPUT_META)
|
if (user_meta->base_meta.meta_type != NVDSINFER_TENSOR_OUTPUT_META)
|
||||||
continue;
|
continue;
|
||||||
|
extract_tensor_metadata(user_meta, networkInfo, batch_meta,
|
||||||
/* convert to tensor metadata */
|
frame_meta);
|
||||||
NvDsInferTensorMeta *meta =
|
|
||||||
(NvDsInferTensorMeta *)user_meta->user_meta_data;
|
|
||||||
for (unsigned int i = 0; i < meta->num_output_layers; i++) {
|
|
||||||
NvDsInferLayerInfo *info = &meta->output_layers_info[i];
|
|
||||||
info->buffer = meta->out_buf_ptrs_host[i];
|
|
||||||
if (use_device_mem && meta->out_buf_ptrs_dev[i]) {
|
|
||||||
cudaMemcpy(meta->out_buf_ptrs_host[i],
|
|
||||||
meta->out_buf_ptrs_dev[i],
|
|
||||||
info->inferDims.numElements * 4,
|
|
||||||
cudaMemcpyDeviceToHost);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/* Parse output tensor and fill detection results into objectList.
|
|
||||||
*/
|
|
||||||
std::vector<NvDsInferLayerInfo> outputLayersInfo(
|
|
||||||
meta->output_layers_info,
|
|
||||||
meta->output_layers_info + meta->num_output_layers);
|
|
||||||
#if NVDS_VERSION_MAJOR >= 5
|
|
||||||
if (nvds_lib_major_version >= 5) {
|
|
||||||
if (meta->network_info.width != networkInfo.width ||
|
|
||||||
meta->network_info.height != networkInfo.height ||
|
|
||||||
meta->network_info.channels != networkInfo.channels) {
|
|
||||||
g_error("failed to check pgie network info\n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
float *outputBuffer = (float *)outputLayersInfo[0].buffer;
|
|
||||||
(void)outputBuffer;
|
|
||||||
// NvDsInferDims dims = outputLayersInfo[0].inferDims;
|
|
||||||
|
|
||||||
for (size_t jkl = 0; jkl < outputLayersInfo.size(); jkl++) {
|
|
||||||
const NvDsInferLayerInfo &layer = outputLayersInfo[jkl];
|
|
||||||
|
|
||||||
unsigned int numDims = layer.inferDims.numDims;
|
|
||||||
unsigned int numElements = layer.inferDims.numElements;
|
|
||||||
(void)numElements;
|
|
||||||
(void)numDims;
|
|
||||||
|
|
||||||
// std::cout << "Layer " << jkl << " (" << layer.layerName <<
|
|
||||||
// "):\n"; std::cout << " Num Dims: " << numDims << "\n";
|
|
||||||
// std::cout << " Num Elements: " << numElements << "\n";
|
|
||||||
// std::cout << " Dims: [";
|
|
||||||
// for (unsigned int mno = 0; mno < numDims; ++mno) {
|
|
||||||
// std::cout << layer.inferDims.d[mno];
|
|
||||||
// // layer.inferDims.d[0] = 100;
|
|
||||||
// // layer.inferDims.d[1] = 57;
|
|
||||||
// if (mno < numDims - 1)
|
|
||||||
// std::cout << ", ";
|
|
||||||
// }
|
|
||||||
// std::cout << "]\n";
|
|
||||||
}
|
|
||||||
const NvDsInferLayerInfo &layer =
|
|
||||||
outputLayersInfo[0]; // or loop over all
|
|
||||||
|
|
||||||
uint detected_persons = 0;
|
|
||||||
float *data = static_cast<float *>(layer.buffer);
|
|
||||||
for (unsigned int jkl = 0; jkl < 100;
|
|
||||||
jkl++) { // 100 persons for each frame
|
|
||||||
if (data[jkl * 57 + 4] > threshold_body_detection) {
|
|
||||||
detected_persons++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
update_frame_with_face_body_meta(detected_persons, batch_meta, meta,
|
|
||||||
data, frame_meta);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// use_device_mem = 1 - use_device_mem;
|
// use_device_mem = 1 - use_device_mem;
|
||||||
return GST_PAD_PROBE_OK;
|
return GST_PAD_PROBE_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void NvInferServerManager::extract_tensor_metadata(
|
||||||
|
NvDsUserMeta *user_meta, NvDsInferNetworkInfo networkInfo,
|
||||||
|
NvDsBatchMeta *batch_meta, NvDsFrameMeta *frame_meta) {
|
||||||
|
/* convert to tensor metadata */
|
||||||
|
NvDsInferTensorMeta *meta =
|
||||||
|
(NvDsInferTensorMeta *)user_meta->user_meta_data;
|
||||||
|
for (unsigned int i = 0; i < meta->num_output_layers; i++) {
|
||||||
|
NvDsInferLayerInfo *info = &meta->output_layers_info[i];
|
||||||
|
info->buffer = meta->out_buf_ptrs_host[i];
|
||||||
|
if (use_device_mem && meta->out_buf_ptrs_dev[i]) {
|
||||||
|
cudaMemcpy(meta->out_buf_ptrs_host[i], meta->out_buf_ptrs_dev[i],
|
||||||
|
info->inferDims.numElements * 4, cudaMemcpyDeviceToHost);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Parse output tensor and fill detection results into objectList.
|
||||||
|
*/
|
||||||
|
std::vector<NvDsInferLayerInfo> outputLayersInfo(
|
||||||
|
meta->output_layers_info,
|
||||||
|
meta->output_layers_info + meta->num_output_layers);
|
||||||
|
#if NVDS_VERSION_MAJOR >= 5
|
||||||
|
if (nvds_lib_major_version >= 5) {
|
||||||
|
if (meta->network_info.width != networkInfo.width ||
|
||||||
|
meta->network_info.height != networkInfo.height ||
|
||||||
|
meta->network_info.channels != networkInfo.channels) {
|
||||||
|
g_error("failed to check pgie network info\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
float *outputBuffer = (float *)outputLayersInfo[0].buffer;
|
||||||
|
(void)outputBuffer;
|
||||||
|
// NvDsInferDims dims = outputLayersInfo[0].inferDims;
|
||||||
|
|
||||||
|
for (size_t jkl = 0; jkl < outputLayersInfo.size(); jkl++) {
|
||||||
|
const NvDsInferLayerInfo &layer = outputLayersInfo[jkl];
|
||||||
|
|
||||||
|
unsigned int numDims = layer.inferDims.numDims;
|
||||||
|
unsigned int numElements = layer.inferDims.numElements;
|
||||||
|
(void)numElements;
|
||||||
|
(void)numDims;
|
||||||
|
|
||||||
|
// std::cout << "Layer " << jkl << " (" << layer.layerName <<
|
||||||
|
// "):\n"; std::cout << " Num Dims: " << numDims << "\n";
|
||||||
|
// std::cout << " Num Elements: " << numElements << "\n";
|
||||||
|
// std::cout << " Dims: [";
|
||||||
|
// for (unsigned int mno = 0; mno < numDims; ++mno) {
|
||||||
|
// std::cout << layer.inferDims.d[mno];
|
||||||
|
// // layer.inferDims.d[0] = 100;
|
||||||
|
// // layer.inferDims.d[1] = 57;
|
||||||
|
// if (mno < numDims - 1)
|
||||||
|
// std::cout << ", ";
|
||||||
|
// }
|
||||||
|
// std::cout << "]\n";
|
||||||
|
}
|
||||||
|
const NvDsInferLayerInfo &layer = outputLayersInfo[0]; // or loop over all
|
||||||
|
|
||||||
|
uint detected_persons = 0;
|
||||||
|
float *data = static_cast<float *>(layer.buffer);
|
||||||
|
for (unsigned int jkl = 0; jkl < 100;
|
||||||
|
jkl++) { // maximum 100 persons for each frame
|
||||||
|
if (data[jkl * 57 + 4] > threshold_body_detection) {
|
||||||
|
detected_persons++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
update_frame_with_face_body_meta(detected_persons, batch_meta, meta, data,
|
||||||
|
frame_meta);
|
||||||
|
}
|
||||||
|
|
||||||
void NvInferServerManager::update_frame_with_face_body_meta(
|
void NvInferServerManager::update_frame_with_face_body_meta(
|
||||||
uint detected_persons, NvDsBatchMeta *batch_meta, NvDsInferTensorMeta *meta,
|
uint detected_persons, NvDsBatchMeta *batch_meta, NvDsInferTensorMeta *meta,
|
||||||
float *data, NvDsFrameMeta *frame_meta) {
|
float *data, NvDsFrameMeta *frame_meta) {
|
||||||
|
|||||||
@ -43,4 +43,6 @@ class NvInferServerManager {
|
|||||||
static void update_frame_with_face_body_meta(uint, NvDsBatchMeta *,
|
static void update_frame_with_face_body_meta(uint, NvDsBatchMeta *,
|
||||||
NvDsInferTensorMeta *, float *,
|
NvDsInferTensorMeta *, float *,
|
||||||
NvDsFrameMeta *);
|
NvDsFrameMeta *);
|
||||||
|
static void extract_tensor_metadata(NvDsUserMeta *, NvDsInferNetworkInfo,
|
||||||
|
NvDsBatchMeta *, NvDsFrameMeta *);
|
||||||
};
|
};
|
||||||
Loading…
x
Reference in New Issue
Block a user