Modify face warp

This commit is contained in:
Barzan Hayati 2025-09-23 19:23:59 +00:00
parent d2c7e2c91f
commit 31ff82123b
3 changed files with 54 additions and 28 deletions

View File

@ -23,7 +23,7 @@ Notes:
to 112x112 output width/height; matches typical ArcFace preprocessing. to 112x112 output width/height; matches typical ArcFace preprocessing.
""" """
import os # import os
import json import json
import numpy as np import numpy as np
import cv2 import cv2
@ -31,10 +31,19 @@ import cv2
import triton_python_backend_utils as pb_utils import triton_python_backend_utils as pb_utils
# import logging
# # Put this at the top of your script or inside initialize()
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- #
# Utility: build canonical destination template once and reuse # # Utility: build canonical destination template once and reuse #
# --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- #
def _canonical_template(output_w: int, output_h: int, scale_factor: float) -> np.ndarray: def _canonical_template(
output_w: int, output_h: int, scale_factor: float
) -> np.ndarray:
""" """
Compute canonical destination 5-point template scaled to the desired output Compute canonical destination 5-point template scaled to the desired output
size and zoomed by `scale_factor`. size and zoomed by `scale_factor`.
@ -72,16 +81,16 @@ def _estimate_affine(src_kps: np.ndarray, dst_kps: np.ndarray) -> np.ndarray:
Uses cv2.estimateAffinePartial2D with LMEDS for robustness. Uses cv2.estimateAffinePartial2D with LMEDS for robustness.
""" """
# cv2 expects shape (N,2). Ensure contiguous float32.
M, _ = cv2.estimateAffinePartial2D(src_kps, dst_kps, method=cv2.LMEDS) M, _ = cv2.estimateAffinePartial2D(src_kps, dst_kps, method=cv2.LMEDS)
if M is None: if M is None:
# Fallback: identity with translation to keep image valid. # Fallback: identity with translation to keep image valid.
M = np.array([[1.0, 0.0, 0.0], M = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype=np.float32)
[0.0, 1.0, 0.0]], dtype=np.float32)
return M.astype(np.float32) return M.astype(np.float32)
def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int) -> np.ndarray: def _warp_image_nchw(
img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int
) -> np.ndarray:
""" """
Warp a single NCHW FP32 image using affine matrix M into out size W,H. Warp a single NCHW FP32 image using affine matrix M into out size W,H.
@ -90,11 +99,17 @@ def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int)
M: (2,3) float32 M: (2,3) float32
out_w, out_h: ints out_w, out_h: ints
Returns: Returns:
(3,out_h,out_w) float32 aligned image. (3,out_h,out_w) float32 aligned image.
""" """
# logger.info(f"shape of image is: {img_chw.shape}, type of image: {img_chw.dtype}, min: {img_chw.min()} , max is {img_chw.max()}")
# Convert to HWC for cv2.warpAffine (expects HxW xC, BGR/RGB agnostic) # Convert to HWC for cv2.warpAffine (expects HxW xC, BGR/RGB agnostic)
img_hwc = np.transpose(img_chw, (1, 2, 0)) # H,W,C img_hwc = np.transpose(img_chw, (1, 2, 0)) # H,W,C
img_hwc = ((img_hwc + 1.0) * 127.5).clip(0, 255).astype(np.uint8)
# Ithink input is between -1 to 1, so we change it to 0 , 255 uint
# img_hwc = ((img_hwc + 1) * 127.5).astype(np.uint8)
# cv2.imwrite('/models/input_of_warp.jpg', img_hwc)
warped = cv2.warpAffine( warped = cv2.warpAffine(
img_hwc, img_hwc,
M, M,
@ -102,9 +117,17 @@ def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int)
flags=cv2.INTER_CUBIC, flags=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_REPLICATE, borderMode=cv2.BORDER_REPLICATE,
) )
# make it bgr:
# warped = warped[..., ::-1]
# logger.info(f"shape of warped is: {warped.shape}, type of image: {warped.dtype}, min: {warped.min()} , max is {warped.max()}")
# warped.astype(np.float32)
# Back to NCHW # Back to NCHW
warped_chw = np.transpose(warped, (2, 0, 1)) # cv2.imwrite('/models/warped.jpg', warped)
return warped_chw.astype(np.float32) warped = np.transpose(warped, (2, 0, 1))
warped = ((warped.astype(np.float32) / 255.0) - 0.5) / 0.5
# warped = ((warped /warped.max()) - 0.5) / 0.5
# logger.info(f"after preproces for embeding: shape of warped is: {warped.shape}, type of image: {warped.dtype}, min: {warped.min()} , max is {warped.max()}")
return warped
class TritonPythonModel: class TritonPythonModel:
@ -117,9 +140,11 @@ class TritonPythonModel:
Called once when the model is loaded. Called once when the model is loaded.
""" """
# Parse model config to get default scale factor (if provided). # Parse model config to get default scale factor (if provided).
model_config = json.loads(args['model_config']) model_config = json.loads(args["model_config"])
params = model_config.get('parameters', {}) params = model_config.get("parameters", {})
self.default_scale = float(params.get('scale_factor', {}).get('string_value', '1.0')) self.default_scale = float(
params.get("scale_factor", {}).get("string_value", "1.0")
)
# Output dimensions from config; we assume fixed 112x112. # Output dimensions from config; we assume fixed 112x112.
# (We could parse from config but we'll hardcode to match pbtxt.) # (We could parse from config but we'll hardcode to match pbtxt.)
@ -127,7 +152,7 @@ class TritonPythonModel:
self.out_h = 112 self.out_h = 112
# Precompute base canonical template for default scale (will adjust persample if needed). # Precompute base canonical template for default scale (will adjust persample if needed).
self.base_template = _canonical_template(self.out_w, self.out_h, 1.0) self.base_template = _canonical_template(self.out_w, self.out_h, 0.93)
self.embeding_model_name = "face_embeding" self.embeding_model_name = "face_embeding"
def execute(self, requests): def execute(self, requests):
@ -135,16 +160,14 @@ class TritonPythonModel:
for request in requests: for request in requests:
# ---- Fetch tensors ---- # ---- Fetch tensors ----
# print("hi, new sample")
in_img_tensor = pb_utils.get_input_tensor_by_name(request, "input") in_img_tensor = pb_utils.get_input_tensor_by_name(request, "input")
in_lmk_tensor = pb_utils.get_input_tensor_by_name(request, "landmarks") in_lmk_tensor = pb_utils.get_input_tensor_by_name(request, "landmarks")
score_tensor = pb_utils.get_input_tensor_by_name(request, "score") score_tensor = pb_utils.get_input_tensor_by_name(request, "score")
imgs = in_img_tensor.as_numpy() # [B,3,160,160]
imgs = in_img_tensor.as_numpy() # [B,3,160,160] lmks = in_lmk_tensor.as_numpy() # [B,5,2]
lmks = in_lmk_tensor.as_numpy() # [B,5,2] scores = score_tensor.as_numpy() # [B,1]
scores = score_tensor.as_numpy() # [B,1]
# Ensure batch dimension # Ensure batch dimension
if imgs.ndim == 3: if imgs.ndim == 3:
@ -168,11 +191,15 @@ class TritonPythonModel:
if score < 0.9: if score < 0.9:
continue # Skip, leave embedding as zero continue # Skip, leave embedding as zero
src_img = imgs[i] src_img = imgs[i]
src_kps = lmks[i].astype(np.float32) src_kps = lmks[i].astype(np.float32) * 160
# Align # Align
dst_kps = self.base_template dst_kps = self.base_template
M = _estimate_affine(src_kps, dst_kps) M = _estimate_affine(src_kps, dst_kps)
# logger.info(f"src_kps(input): {src_kps}")
# logger.info(f"dst_kps(grandtruth): {dst_kps}")
# logger.info(f"M is : {M}")
warped = _warp_image_nchw(src_img, M, self.out_w, self.out_h) warped = _warp_image_nchw(src_img, M, self.out_w, self.out_h)
aligned_imgs.append(warped) aligned_imgs.append(warped)
@ -182,17 +209,20 @@ class TritonPythonModel:
if aligned_imgs: if aligned_imgs:
aligned_batch = np.stack(aligned_imgs) # shape: [valid_N, 3, 112, 112] aligned_batch = np.stack(aligned_imgs) # shape: [valid_N, 3, 112, 112]
# logger.info(f"shape of input of embeding batch : {aligned_batch.shape}, type of image: {aligned_batch.dtype}, min: {aligned_batch.min()} , max is {aligned_batch.max()}")
infer_input = pb_utils.Tensor("input", aligned_batch) infer_input = pb_utils.Tensor("input", aligned_batch)
inference_request = pb_utils.InferenceRequest( inference_request = pb_utils.InferenceRequest(
model_name=self.embeding_model_name, model_name=self.embeding_model_name,
requested_output_names=["output"], requested_output_names=["output"],
inputs=[infer_input] inputs=[infer_input],
) )
inference_response = inference_request.exec() inference_response = inference_request.exec()
embedding_tensor_list = inference_response.output_tensors() embedding_tensor_list = inference_response.output_tensors()
responses.append(pb_utils.InferenceResponse(output_tensors=embedding_tensor_list)) responses.append(
pb_utils.InferenceResponse(output_tensors=embedding_tensor_list)
)
return responses return responses
@ -200,4 +230,4 @@ class TritonPythonModel:
""" """
Called when the model is being unloaded. Nothing to clean up here. Called when the model is being unloaded. Nothing to clean up here.
""" """
return return

View File

@ -17,9 +17,7 @@ output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names
# Send inference request # Send inference request
response = client.infer( response = client.infer(
model_name="face_recognition", model_name="face_recognition", inputs=[input_tensor], outputs=output_tensors
inputs=[input_tensor],
outputs=output_tensors
) )
# Parse and print outputs # Parse and print outputs

View File

@ -37,9 +37,7 @@ output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names
# Send inference request # Send inference request
response = client.infer( response = client.infer(
model_name="face_recognition", model_name="face_recognition", inputs=[input_tensor], outputs=output_tensors
inputs=[input_tensor],
outputs=output_tensors
) )
# ----------------------------- # -----------------------------