Modify face warp
This commit is contained in:
parent
d2c7e2c91f
commit
31ff82123b
@ -23,7 +23,7 @@ Notes:
|
||||
to 112x112 output width/height; matches typical ArcFace preprocessing.
|
||||
"""
|
||||
|
||||
import os
|
||||
# import os
|
||||
import json
|
||||
import numpy as np
|
||||
import cv2
|
||||
@ -31,10 +31,19 @@ import cv2
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
# import logging
|
||||
|
||||
# # Put this at the top of your script or inside initialize()
|
||||
# logging.basicConfig(level=logging.INFO)
|
||||
# logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# Utility: build canonical destination template once and reuse #
|
||||
# --------------------------------------------------------------------------- #
|
||||
def _canonical_template(output_w: int, output_h: int, scale_factor: float) -> np.ndarray:
|
||||
def _canonical_template(
|
||||
output_w: int, output_h: int, scale_factor: float
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute canonical destination 5-point template scaled to the desired output
|
||||
size and zoomed by `scale_factor`.
|
||||
@ -72,16 +81,16 @@ def _estimate_affine(src_kps: np.ndarray, dst_kps: np.ndarray) -> np.ndarray:
|
||||
|
||||
Uses cv2.estimateAffinePartial2D with LMEDS for robustness.
|
||||
"""
|
||||
# cv2 expects shape (N,2). Ensure contiguous float32.
|
||||
M, _ = cv2.estimateAffinePartial2D(src_kps, dst_kps, method=cv2.LMEDS)
|
||||
if M is None:
|
||||
# Fallback: identity with translation to keep image valid.
|
||||
M = np.array([[1.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0]], dtype=np.float32)
|
||||
M = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype=np.float32)
|
||||
return M.astype(np.float32)
|
||||
|
||||
|
||||
def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int) -> np.ndarray:
|
||||
def _warp_image_nchw(
|
||||
img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Warp a single NCHW FP32 image using affine matrix M into out size W,H.
|
||||
|
||||
@ -90,11 +99,17 @@ def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int)
|
||||
M: (2,3) float32
|
||||
out_w, out_h: ints
|
||||
|
||||
|
||||
Returns:
|
||||
(3,out_h,out_w) float32 aligned image.
|
||||
"""
|
||||
# logger.info(f"shape of image is: {img_chw.shape}, type of image: {img_chw.dtype}, min: {img_chw.min()} , max is {img_chw.max()}")
|
||||
# Convert to HWC for cv2.warpAffine (expects HxW xC, BGR/RGB agnostic)
|
||||
img_hwc = np.transpose(img_chw, (1, 2, 0)) # H,W,C
|
||||
img_hwc = ((img_hwc + 1.0) * 127.5).clip(0, 255).astype(np.uint8)
|
||||
# Ithink input is between -1 to 1, so we change it to 0 , 255 uint
|
||||
# img_hwc = ((img_hwc + 1) * 127.5).astype(np.uint8)
|
||||
# cv2.imwrite('/models/input_of_warp.jpg', img_hwc)
|
||||
warped = cv2.warpAffine(
|
||||
img_hwc,
|
||||
M,
|
||||
@ -102,9 +117,17 @@ def _warp_image_nchw(img_chw: np.ndarray, M: np.ndarray, out_w: int, out_h: int)
|
||||
flags=cv2.INTER_CUBIC,
|
||||
borderMode=cv2.BORDER_REPLICATE,
|
||||
)
|
||||
# make it bgr:
|
||||
# warped = warped[..., ::-1]
|
||||
# logger.info(f"shape of warped is: {warped.shape}, type of image: {warped.dtype}, min: {warped.min()} , max is {warped.max()}")
|
||||
# warped.astype(np.float32)
|
||||
# Back to NCHW
|
||||
warped_chw = np.transpose(warped, (2, 0, 1))
|
||||
return warped_chw.astype(np.float32)
|
||||
# cv2.imwrite('/models/warped.jpg', warped)
|
||||
warped = np.transpose(warped, (2, 0, 1))
|
||||
warped = ((warped.astype(np.float32) / 255.0) - 0.5) / 0.5
|
||||
# warped = ((warped /warped.max()) - 0.5) / 0.5
|
||||
# logger.info(f"after preproces for embeding: shape of warped is: {warped.shape}, type of image: {warped.dtype}, min: {warped.min()} , max is {warped.max()}")
|
||||
return warped
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
@ -117,9 +140,11 @@ class TritonPythonModel:
|
||||
Called once when the model is loaded.
|
||||
"""
|
||||
# Parse model config to get default scale factor (if provided).
|
||||
model_config = json.loads(args['model_config'])
|
||||
params = model_config.get('parameters', {})
|
||||
self.default_scale = float(params.get('scale_factor', {}).get('string_value', '1.0'))
|
||||
model_config = json.loads(args["model_config"])
|
||||
params = model_config.get("parameters", {})
|
||||
self.default_scale = float(
|
||||
params.get("scale_factor", {}).get("string_value", "1.0")
|
||||
)
|
||||
|
||||
# Output dimensions from config; we assume fixed 112x112.
|
||||
# (We could parse from config but we'll hardcode to match pbtxt.)
|
||||
@ -127,7 +152,7 @@ class TritonPythonModel:
|
||||
self.out_h = 112
|
||||
|
||||
# Precompute base canonical template for default scale (will adjust per‑sample if needed).
|
||||
self.base_template = _canonical_template(self.out_w, self.out_h, 1.0)
|
||||
self.base_template = _canonical_template(self.out_w, self.out_h, 0.93)
|
||||
self.embeding_model_name = "face_embeding"
|
||||
|
||||
def execute(self, requests):
|
||||
@ -135,16 +160,14 @@ class TritonPythonModel:
|
||||
|
||||
for request in requests:
|
||||
# ---- Fetch tensors ----
|
||||
# print("hi, new sample")
|
||||
in_img_tensor = pb_utils.get_input_tensor_by_name(request, "input")
|
||||
in_lmk_tensor = pb_utils.get_input_tensor_by_name(request, "landmarks")
|
||||
score_tensor = pb_utils.get_input_tensor_by_name(request, "score")
|
||||
|
||||
|
||||
imgs = in_img_tensor.as_numpy() # [B,3,160,160]
|
||||
lmks = in_lmk_tensor.as_numpy() # [B,5,2]
|
||||
scores = score_tensor.as_numpy() # [B,1]
|
||||
|
||||
|
||||
imgs = in_img_tensor.as_numpy() # [B,3,160,160]
|
||||
lmks = in_lmk_tensor.as_numpy() # [B,5,2]
|
||||
scores = score_tensor.as_numpy() # [B,1]
|
||||
|
||||
# Ensure batch dimension
|
||||
if imgs.ndim == 3:
|
||||
@ -168,11 +191,15 @@ class TritonPythonModel:
|
||||
if score < 0.9:
|
||||
continue # Skip, leave embedding as zero
|
||||
src_img = imgs[i]
|
||||
src_kps = lmks[i].astype(np.float32)
|
||||
src_kps = lmks[i].astype(np.float32) * 160
|
||||
|
||||
# Align
|
||||
dst_kps = self.base_template
|
||||
|
||||
M = _estimate_affine(src_kps, dst_kps)
|
||||
# logger.info(f"src_kps(input): {src_kps}")
|
||||
# logger.info(f"dst_kps(grandtruth): {dst_kps}")
|
||||
# logger.info(f"M is : {M}")
|
||||
warped = _warp_image_nchw(src_img, M, self.out_w, self.out_h)
|
||||
|
||||
aligned_imgs.append(warped)
|
||||
@ -182,17 +209,20 @@ class TritonPythonModel:
|
||||
if aligned_imgs:
|
||||
aligned_batch = np.stack(aligned_imgs) # shape: [valid_N, 3, 112, 112]
|
||||
|
||||
# logger.info(f"shape of input of embeding batch : {aligned_batch.shape}, type of image: {aligned_batch.dtype}, min: {aligned_batch.min()} , max is {aligned_batch.max()}")
|
||||
infer_input = pb_utils.Tensor("input", aligned_batch)
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name=self.embeding_model_name,
|
||||
requested_output_names=["output"],
|
||||
inputs=[infer_input]
|
||||
inputs=[infer_input],
|
||||
)
|
||||
inference_response = inference_request.exec()
|
||||
|
||||
embedding_tensor_list = inference_response.output_tensors()
|
||||
|
||||
responses.append(pb_utils.InferenceResponse(output_tensors=embedding_tensor_list))
|
||||
responses.append(
|
||||
pb_utils.InferenceResponse(output_tensors=embedding_tensor_list)
|
||||
)
|
||||
|
||||
return responses
|
||||
|
||||
@ -200,4 +230,4 @@ class TritonPythonModel:
|
||||
"""
|
||||
Called when the model is being unloaded. Nothing to clean up here.
|
||||
"""
|
||||
return
|
||||
return
|
||||
|
||||
@ -17,9 +17,7 @@ output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names
|
||||
|
||||
# Send inference request
|
||||
response = client.infer(
|
||||
model_name="face_recognition",
|
||||
inputs=[input_tensor],
|
||||
outputs=output_tensors
|
||||
model_name="face_recognition", inputs=[input_tensor], outputs=output_tensors
|
||||
)
|
||||
|
||||
# Parse and print outputs
|
||||
|
||||
@ -37,9 +37,7 @@ output_tensors = [httpclient.InferRequestedOutput(name) for name in output_names
|
||||
|
||||
# Send inference request
|
||||
response = client.infer(
|
||||
model_name="face_recognition",
|
||||
inputs=[input_tensor],
|
||||
outputs=output_tensors
|
||||
model_name="face_recognition", inputs=[input_tensor], outputs=output_tensors
|
||||
)
|
||||
|
||||
# -----------------------------
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user