2025-11-10 15:32:25 +00:00

102 lines
2.9 KiB
Python

from sentence_transformers import (
SentenceTransformer,
InputExample,
SentenceTransformerTrainingArguments,
SentenceTransformerTrainer,
)
from sentence_transformers.losses import TripletLoss, MatryoshkaLoss, TripletDistanceMetric
from sentence_transformers.evaluation import TripletEvaluator, SimilarityFunction, SequentialEvaluator
from transformers import EarlyStoppingCallback
import torch
import os
import json
from datasets import Dataset
model = SentenceTransformer("jinaai/jina-embeddings-v3",
trust_remote_code=True,
local_files_only=False,
model_kwargs={'default_task': 'text-matching'})
print("loading dataset")
# 3. Load a dataset to finetune on
with open("/home/firouzi/embedding_model/data/train_100.json", "r", encoding="utf-8") as f:
all_dataset = json.load(f)
anchors = []
positives = []
negatives_1 = []
negatives_2 = []
negatives_3 = []
negatives_4 = []
negatives_5 = []
for data in all_dataset:
anchors.append(data["question"])
positives.append(data["passage_positive"])
all_negatives = data["passage_negative"] + data["passage_negative_random"]
if len(all_negatives) < 5:
for i in range(5 - len(all_negatives)):
all_negatives.append(all_negatives[0])
negatives_1.append(all_negatives[0])
negatives_2.append(all_negatives[1])
negatives_3.append(all_negatives[2])
negatives_4.append(all_negatives[3])
negatives_5.append(all_negatives[4])
dataset = Dataset.from_dict({
"anchor": anchors,
"positive": positives,
"negative": negatives_1,
})
dataset_split = dataset.train_test_split(test_size=0.05, seed=42)
train_dataset = dataset_split["train"]
eval_dataset = dataset_split["test"]
loss = TripletLoss(model,
distance_metric=TripletDistanceMetric.COSINE,
triplet_margin=0.75)
dev_evaluator = TripletEvaluator(
anchors=eval_dataset["anchor"],
positives=eval_dataset["positive"],
negatives=eval_dataset["negative"],
main_similarity_function=SimilarityFunction.COSINE
)
training_args = SentenceTransformerTrainingArguments(
output_dir="save_dir",
num_train_epochs=1,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
learning_rate=2.5e-5,
warmup_ratio=0.1,
greater_is_better=True,
load_best_model_at_end = True,
metric_for_best_model="eval_cosine_accuracy",
fp16=False,
bf16=True,
eval_strategy="steps",
eval_steps=50,
save_strategy="steps",
save_steps=50,
save_total_limit=10,
logging_steps=50,
logging_first_step=True,
)
trainer = SentenceTransformerTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
loss=loss,
evaluator=dev_evaluator,
)
# pretraining_encoding = model.encode(["The human torch was denied a bank loan."])
# print("Pre-training encoding:", pretraining_encoding)
# Begine fine tuning
trainer.train()