import torch from sentence_transformers import SentenceTransformer device = "cuda:0" if torch.cuda.is_available() else "cpu" # model_id = "google/embeddinggemma-300M" model_id = "my-embedding-gemma/checkpoint-15" model = SentenceTransformer(model_id).to(device=device) def get_scores(query, document): query_embedding = model.encode_query(query) doc_embedding = model.encode_document(document) # Calculate the embedding similarities similarities = model.similarity(query_embedding, doc_embedding) print(similarities) query = "I want to start a tax-free installment investment, what should I do?" documents = "Opening a NISA Account" get_scores(query, documents)