from sentence_transformers import SentenceTransformer class model(): def __init__(self): from sentence_transformers import SentenceTransformer self.model = SentenceTransformer("google/embeddinggemma-300m") def run(self, question:str, chunk:str)->int: query_embeddings = self.model.encode_query(question) document_embeddings = self.model.encode_document(chunk) similarities = self.model.similarity(query_embeddings, document_embeddings) return similarities