bug fix in evaulation

This commit is contained in:
a.hediehloo 2025-12-28 09:54:59 +00:00
parent c5e67e5a3c
commit e9e25a7704
2 changed files with 23 additions and 15 deletions

View File

@ -20,31 +20,40 @@ import numpy as np
class CustomModel:
def __init__(self, model):
def __init__(self):
self.session = requests.Session()
self.model = model
def get_simplexity_query2vec_results(self, sentences, embedding_url, model, template):
params = {}
params["model"] = model
params["template"] = template
def get_embedding(self, sentece, prompt_name):
embedding_url = "http://127.0.0.1:5010/embed"
headers = {"accept": "application/json"}
headers["Content-Type"] = "application/json"
data = {}
data["inputs"] = sentece
data["normalize"] = True
data["prompt_name"] = prompt_name
data["truncate"] = False
data["truncation_direction"] = "Right"
response = self.session.post(embedding_url, headers=headers, data=json.dumps(data), timeout=600)
return response.json()
def get_simplexity_query2vec_results(self, sentences, template):
if len(sentences) < 2000:
my_range = range
else:
my_range = tqdm.trange
batch_size = 1024
batch_size = 64
vec = []
for i in my_range(0, len(sentences), batch_size):
start_idx = i
stop_idx = min(i+batch_size, len(sentences))
data["queries"] = sentences[start_idx:stop_idx]
response = self.session.post(embedding_url, headers=headers, params=params, data=json.dumps(data), timeout=600)
new_vec = response.json()
new_vec = self.get_embedding(sentences[start_idx:stop_idx], template)
vec += new_vec
return vec
@ -57,8 +66,6 @@ class CustomModel:
**kwargs,
) -> np.ndarray:
embedding_url = "http://127.0.0.1:5015/embedding"
if prompt_type == None:
template = "document"
elif prompt_type == PromptType.query:
@ -75,7 +82,7 @@ class CustomModel:
# embeddings = self.get_simplexity_query2vec_results(batch["text"], embedding_url, model, template)
# all_embeddings += embeddings
all_embeddings = self.get_simplexity_query2vec_results(sentences, embedding_url, self.model, template)
all_embeddings = self.get_simplexity_query2vec_results(sentences, template)
return numpy.array(all_embeddings)
@ -102,12 +109,11 @@ def recall_at_k(index, query_embeddings, ground_truth, all_docs, k=10):
return hits / len(ground_truth)
def evaluate():
model_name = "Qwen3-Embedding-0.6B"
# model_name = "KaLM-embedding-multilingual-mini-instruct-v2.5"
# model_name = "KaLM-Embedding-Gemma3-12B-2511"
# model_name = "llama-embed-nemotron-8b"
# model_name = "embeddinggemma-300m"
model = CustomModel(model_name)
model = CustomModel()
file_path = os.path.dirname(__file__)

View File

@ -96,6 +96,8 @@ def is_dataset_cached(dataset_name):
def evaluate():
model = CustomModel()
model_name = "Qwen3-Embedding-0.6B"
file_path = os.path.dirname(__file__)
# model = mteb.get_model(model_name)
# model = SentenceTransformer(model_name)