add evaluation

This commit is contained in:
hediehloo 2025-11-11 07:57:00 +00:00
parent 467c21ce7e
commit ca6548961f

146
evaluation/evaluation.py Normal file
View File

@ -0,0 +1,146 @@
import mteb
import numpy as np
import requests
import tqdm
from torch.utils.data import DataLoader
from mteb.encoder_interface import PromptType
from typing import Any
# from mteb.abstasks.task_metadata import TaskMetadata
# from mteb.models.models_protocols import EncoderProtocol
import json
import os
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
from datasets.config import HF_DATASETS_CACHE
from huggingface_hub.utils import get_session
import numpy
class CustomModel:
def __init__(self, model):
self.session = requests.Session()
self.model = model
def get_simplexity_query2vec_results(self, sentences, embedding_url, model, template):
params = {}
params["model"] = model
params["template"] = template
headers = {"accept": "application/json"}
data = {}
if len(sentences) < 2000:
my_range = range
else:
my_range = tqdm.trange
batch_size = 1024
vec = []
for i in my_range(0, len(sentences), batch_size):
start_idx = i
stop_idx = min(i+batch_size, len(sentences))
data["queries"] = sentences[start_idx:stop_idx]
response = self.session.post(embedding_url, headers=headers, params=params, data=json.dumps(data), timeout=600)
new_vec = response.json()
vec += new_vec
return vec
def encode(
self,
sentences: list[str],
task_name: str,
prompt_type: PromptType | None = None,
**kwargs,
) -> np.ndarray:
embedding_url = "http://127.0.0.1:5000/embedding"
if prompt_type == None:
template = "document"
elif prompt_type == PromptType.query:
template = "query"
elif prompt_type == PromptType.document:
template = "document"
else:
raise Exception("Error: prompt_type")
all_embeddings = []
# all_texts = []
# for batch in inputs:
# all_texts += batch["text"]
# embeddings = self.get_simplexity_query2vec_results(batch["text"], embedding_url, model, template)
# all_embeddings += embeddings
all_embeddings = self.get_simplexity_query2vec_results(sentences, embedding_url, self.model, template)
return numpy.array(all_embeddings)
def is_dataset_cached(dataset_name):
dataset_dir_prefix = dataset_name.replace("/", "__")
return any(dataset_dir_prefix in folder for folder in os.listdir(HF_DATASETS_CACHE))
def evaluate():
# model_name = "Qwen3-Embedding-0.6B"
model_name = "llama-embed-nemotron-8b"
# model_name = "embeddinggemma-300m"
model = CustomModel(model_name)
file_path = os.path.dirname(__file__)
# model = mteb.get_model(model_name)
# model = SentenceTransformer(model_name)
# model.model_card_data.model_name = model_name
# model.mteb_model_meta.name = model_name
# tasks = mteb.get_tasks(tasks=["Banking77Classification"])
fas_benchmark = mteb.get_benchmark("MTEB(fas, v2)")
# benchmark = mteb.get_benchmark("MTEB(eng, v2)")
# benchmark[0].metadata.task_list
# tasks = mteb.get_tasks(tasks=["Banking77Classification"])
# tasks[0].metadata.task_list
# cache = mteb.cache.ResultCache(cache_path=file_path + "/.cache")
# for i in range(len(benchmark)):
# dataset_conf = benchmark[i].metadata_dict["dataset"]
# # if is_dataset_cached(dataset_conf["path"]) == True:
# # continue
# dataset = load_dataset(
# dataset_conf["path"],
# revision=dataset_conf["revision"]
# )
# benchmarks = [fas_benchmark[i] for i in range(len(fas_benchmark)) if fas_benchmark[i].metadata_dict["name"] not in ["DigikalamagClassification", "DigikalamagClustering",
# "MIRACLReranking", "PersianWebDocumentRetrieval"]]
# benchmarks = [fas_benchmark[i] for i in range(len(fas_benchmark)) if fas_benchmark[i].metadata_dict["name"] in ["ArguAna-Fa.v2"]]
benchmarks = [fas_benchmark[i] for i in range(len(fas_benchmark)) if fas_benchmark[i].metadata_dict["name"] in ["ArguAna-Fa.v2", "SCIDOCS-Fa.v2"]]
evaluation = mteb.MTEB(tasks=benchmarks)
results = evaluation.run(model, output_folder=file_path + "/results/" + model_name)
# for benchmark in benchmarks:
# try:
# evaluation = mteb.MTEB(tasks=[benchmark])
# # results = evaluation.run(model, output_folder=file_path + "/results/Qwen3-Embedding-4B", proxies=proxies)
# results = evaluation.run(model, output_folder=file_path + "/results/Qwen3-Embedding-0.6B")
# except:
# print("________________________")
# print("Error : " + str(benchmark.metadata_dict["name"]))
# results = mteb.evaluate(model, tasks=benchmark, cache=cache)
print("results = " + str(results))
def main():
# get_results()
evaluate()
if __name__ == "__main__":
main()