add convert dataset and train qwen

This commit is contained in:
a.hediehloo 2025-12-21 12:09:32 +00:00
parent 0de8db232b
commit 793508dbd0
11 changed files with 331 additions and 6 deletions

12
.gitignore vendored
View File

@ -1,5 +1,5 @@
data_preprocess/data/* data_preprocess/data/*
data data/models
*/__pycache__/* */__pycache__/*
.env .env
.venv .venv
@ -9,3 +9,13 @@ models
research_notebook/data research_notebook/data
train/qwen/output train/qwen/output
train/qwen/mlruns train/qwen/mlruns
output
data/dataset/__pycache__
data/dataset/generated_250000_general/__pycache__
data/dataset/generated_250000_general/generated_250000_general.jsonl
data/dataset/generated_250000_religous/250_religous_ready.jsonl
!data/dataset/generated_250000_religous/convert_to_jsonl.py
data/dataset/generated_250000_religous/__pycache__
data/dataset/my_local_dataset/__pycache__
data/dataset/v11_dataset_hn/__pycache__
data/dataset/v11_generated/__pycache__

View File

@ -0,0 +1,14 @@
import json
import os
file_path = os.path.dirname(__file__)
input_file = file_path + "/generated_250000_general.json"
output_file = file_path + "/generated_250000_general.jsonl"
with open(input_file, "r", encoding="utf-8") as f_in, open(output_file, "w", encoding="utf-8") as f_out:
data = json.load(f_in) # لیست رکوردها
for record in data:
json_line = json.dumps(record, ensure_ascii=False)
f_out.write(json_line + "\n")
print(f"Converted {input_file} to {output_file}")

View File

@ -0,0 +1,57 @@
from swift.llm import ResponsePreprocessor, DatasetMeta, register_dataset, SubsetDataset, load_dataset
from typing import Dict, Any
import os
class CustomPreprocessor(ResponsePreprocessor):
# def __init__(self, *, columns = None, **kwargs):
# super().__init__(columns=columns, **kwargs)
# self.num_all_negative = 0
def get_detailed_instruct(self, task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
def add_template(self, text):
task = 'Given a web search query, retrieve relevant passages that answer the query'
return self.get_detailed_instruct(task, text)
def preprocess(self, row: Dict[str, Any]) -> Dict[str, Any]:
query = self.add_template(row["query"])
passage_positive = row["passage_positive"]
passage_negative = row["passage_negative"]
passage_negative_random = row["passage_negative_random"]
all_neg = passage_negative + passage_negative_random
all_neg = list(set(all_neg))
# self.num_all_negative += len(all_neg)
row = {
# 'query': [{'role': 'user', 'content': query, 'loss': None}],
'query': query,
'positive_messages': [
[{'role': 'user', 'content': passage_positive[i]}] for i in range(len(passage_positive))
],
'negative_messages': [
[{'role': 'user', 'content': all_neg[i]}] for i in range(len(all_neg))
],
# 'label': 1.0
}
if len(row["negative_messages"]) == 0:
del row["negative_messages"]
return super().preprocess(row)
register_dataset(
DatasetMeta(
dataset_path=os.path.dirname(__file__) + '/generated_250000_general.jsonl',
dataset_name="generated_250000_general",
# subsets=[SubsetDataset('train', split=['train']), SubsetDataset('test', split=['test'])],
preprocess_func=CustomPreprocessor(),
))
if __name__ == '__main__':
# load_dataset returns train_dataset and val_dataset based on `split_dataset_ratio`
# Here, since we didn't pass `split_dataset_ratio` (defaults to 0), we take the first one (index 0)
dataset = load_dataset('generated_250000_general')[0]
test_dataset = load_dataset('swift/financial_classification:test')[0]
print(f'dataset[0]: {dataset[0]}')
print(f'test_dataset[0]: {test_dataset[0]}')

View File

@ -0,0 +1,14 @@
import json
import os
file_path = os.path.dirname(__file__)
input_file = file_path + "/250_religous_ready.json"
output_file = file_path + "/250_religous_ready.jsonl"
with open(input_file, "r", encoding="utf-8") as f_in, open(output_file, "w", encoding="utf-8") as f_out:
data = json.load(f_in) # لیست رکوردها
for record in data:
json_line = json.dumps(record, ensure_ascii=False)
f_out.write(json_line + "\n")
print(f"Converted {input_file} to {output_file}")

View File

@ -0,0 +1,57 @@
from swift.llm import ResponsePreprocessor, DatasetMeta, register_dataset, SubsetDataset, load_dataset
from typing import Dict, Any
import os
class CustomPreprocessor(ResponsePreprocessor):
# def __init__(self, *, columns = None, **kwargs):
# super().__init__(columns=columns, **kwargs)
# self.num_all_negative = 0
def get_detailed_instruct(self, task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
def add_template(self, text):
task = 'Given a web search query, retrieve relevant passages that answer the query'
return self.get_detailed_instruct(task, text)
def preprocess(self, row: Dict[str, Any]) -> Dict[str, Any]:
query = self.add_template(row["query"])
passage_positive = row["passage_positive"]
passage_negative = row["passage_negative"]
passage_negative_random = row["passage_negative_random"]
all_neg = passage_negative + passage_negative_random
all_neg = list(set(all_neg))
# self.num_all_negative += len(all_neg)
row = {
# 'query': [{'role': 'user', 'content': query, 'loss': None}],
'query': query,
'positive_messages': [
[{'role': 'user', 'content': passage_positive[i]}] for i in range(len(passage_positive))
],
'negative_messages': [
[{'role': 'user', 'content': all_neg[i]}] for i in range(len(all_neg))
],
# 'label': 1.0
}
if len(row["negative_messages"]) == 0:
del row["negative_messages"]
return super().preprocess(row)
register_dataset(
DatasetMeta(
dataset_path=os.path.dirname(__file__) + '/250_religous_ready.jsonl',
dataset_name="generated_250000_religous",
# subsets=[SubsetDataset('train', split=['train']), SubsetDataset('test', split=['test'])],
preprocess_func=CustomPreprocessor(),
))
if __name__ == '__main__':
# load_dataset returns train_dataset and val_dataset based on `split_dataset_ratio`
# Here, since we didn't pass `split_dataset_ratio` (defaults to 0), we take the first one (index 0)
dataset = load_dataset('generated_250000_religous')[0]
test_dataset = load_dataset('swift/financial_classification:test')[0]
print(f'dataset[0]: {dataset[0]}')
print(f'test_dataset[0]: {test_dataset[0]}')

View File

@ -0,0 +1,58 @@
from swift.llm import ResponsePreprocessor, DatasetMeta, register_dataset, SubsetDataset, load_dataset
from typing import Dict, Any
import os
class CustomPreprocessor(ResponsePreprocessor):
def __init__(self, *, columns = None, **kwargs):
super().__init__(columns=columns, **kwargs)
self.num_all_negative = 0
def get_detailed_instruct(self, task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
def add_template(self, text):
task = 'Given a web search query, retrieve relevant passages that answer the query'
return self.get_detailed_instruct(task, text)
def preprocess(self, row: Dict[str, Any]) -> Dict[str, Any]:
query = self.add_template(row["query"])
passage_positive = row["passage_positive"]
passage_negative = row["passage_negative"]
passage_negative_random = row["passage_negative_random"]
all_neg = passage_negative + passage_negative_random
all_neg = list(set(all_neg))
self.num_all_negative += len(all_neg)
row = {
# 'query': [{'role': 'user', 'content': query, 'loss': None}],
'query': query,
'positive_messages': [
[{'role': 'user', 'content': passage_positive[i]}] for i in range(len(passage_positive))
],
'negative_messages': [
[{'role': 'user', 'content': all_neg[i]}] for i in range(len(all_neg))
],
# 'label': 1.0
}
if len(row["negative_messages"]) == 0:
del row["negative_messages"]
return super().preprocess(row)
register_dataset(
DatasetMeta(
dataset_path=os.path.dirname(__file__) + '/dataset_train.json',
dataset_name="my_local_dataset",
# subsets=[SubsetDataset('train', split=['train']), SubsetDataset('test', split=['test'])],
preprocess_func=CustomPreprocessor(),
))
if __name__ == '__main__':
# load_dataset returns train_dataset and val_dataset based on `split_dataset_ratio`
# Here, since we didn't pass `split_dataset_ratio` (defaults to 0), we take the first one (index 0)
dataset = load_dataset('my_local_dataset')[0]
test_dataset = load_dataset('swift/financial_classification:test')[0]
print(f'dataset[0]: {dataset[0]}')
print(f'test_dataset[0]: {test_dataset[0]}')

View File

@ -0,0 +1,57 @@
from swift.llm import ResponsePreprocessor, DatasetMeta, register_dataset, SubsetDataset, load_dataset
from typing import Dict, Any
import os
class CustomPreprocessor(ResponsePreprocessor):
# def __init__(self, *, columns = None, **kwargs):
# super().__init__(columns=columns, **kwargs)
# self.num_all_negative = 0
def get_detailed_instruct(self, task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
def add_template(self, text):
task = 'Given a web search query, retrieve relevant passages that answer the query'
return self.get_detailed_instruct(task, text)
def preprocess(self, row: Dict[str, Any]) -> Dict[str, Any]:
query = self.add_template(row["query"])
passage_positive = row["passage_positive"]
passage_negative = row["passage_negative"]
passage_negative_random = row["passage_negative_random"]
all_neg = passage_negative + passage_negative_random
all_neg = list(set(all_neg))
# self.num_all_negative += len(all_neg)
row = {
# 'query': [{'role': 'user', 'content': query, 'loss': None}],
'query': query,
'positive_messages': [
[{'role': 'user', 'content': passage_positive[i]}] for i in range(len(passage_positive))
],
'negative_messages': [
[{'role': 'user', 'content': all_neg[i]}] for i in range(len(all_neg))
],
# 'label': 1.0
}
if len(row["negative_messages"]) == 0:
del row["negative_messages"]
return super().preprocess(row)
register_dataset(
DatasetMeta(
dataset_path=os.path.dirname(__file__) + '/v11_dataset_hn.json',
dataset_name="v11_dataset_hn",
# subsets=[SubsetDataset('train', split=['train']), SubsetDataset('test', split=['test'])],
preprocess_func=CustomPreprocessor(),
))
if __name__ == '__main__':
# load_dataset returns train_dataset and val_dataset based on `split_dataset_ratio`
# Here, since we didn't pass `split_dataset_ratio` (defaults to 0), we take the first one (index 0)
dataset = load_dataset('v11_dataset_hn')[0]
test_dataset = load_dataset('swift/financial_classification:test')[0]
print(f'dataset[0]: {dataset[0]}')
print(f'test_dataset[0]: {test_dataset[0]}')

View File

@ -0,0 +1,53 @@
from swift.llm import ResponsePreprocessor, DatasetMeta, register_dataset, SubsetDataset, load_dataset
from typing import Dict, Any
import os
class CustomPreprocessor(ResponsePreprocessor):
def get_detailed_instruct(self, task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
def add_template(self, text):
task = 'Given a web search query, retrieve relevant passages that answer the query'
return self.get_detailed_instruct(task, text)
def preprocess(self, row: Dict[str, Any]) -> Dict[str, Any]:
query = self.add_template(row["query"])
passage_positive = [row["document"]]
passage_negative = []
passage_negative_random = []
all_neg = passage_negative + passage_negative_random
all_neg = list(set(all_neg))
row = {
# 'query': [{'role': 'user', 'content': query, 'loss': None}],
'query': query,
'positive_messages': [
[{'role': 'user', 'content': passage_positive[i]}] for i in range(len(passage_positive))
],
'negative_messages': [
[{'role': 'user', 'content': all_neg[i]}] for i in range(len(all_neg))
],
# 'label': 1.0
}
if len(row["negative_messages"]) == 0:
del row["negative_messages"]
return super().preprocess(row)
register_dataset(
DatasetMeta(
dataset_path=os.path.dirname(__file__) + '/v11_dataset.json',
dataset_name="v11_generated_dataset",
# subsets=[SubsetDataset('train', split=['train']), SubsetDataset('test', split=['test'])],
preprocess_func=CustomPreprocessor(),
))
if __name__ == '__main__':
# load_dataset returns train_dataset and val_dataset based on `split_dataset_ratio`
# Here, since we didn't pass `split_dataset_ratio` (defaults to 0), we take the first one (index 0)
dataset = load_dataset('v11_generated_dataset')[0]
test_dataset = load_dataset('swift/financial_classification:test')[0]
print(f'dataset[0]: {dataset[0]}')
print(f'test_dataset[0]: {test_dataset[0]}')

View File

@ -56,7 +56,7 @@ class CustomModel:
**kwargs, **kwargs,
) -> np.ndarray: ) -> np.ndarray:
embedding_url = "http://127.0.0.1:5000/embedding" embedding_url = "http://127.0.0.1:5015/embedding"
if prompt_type == None: if prompt_type == None:
template = "document" template = "document"
@ -89,6 +89,8 @@ def is_dataset_cached(dataset_name):
def evaluate(): def evaluate():
model_name = "Qwen3-Embedding-0.6B" model_name = "Qwen3-Embedding-0.6B"
# model_name = "KaLM-embedding-multilingual-mini-instruct-v2.5"
# model_name = "KaLM-Embedding-Gemma3-12B-2511"
# model_name = "llama-embed-nemotron-8b" # model_name = "llama-embed-nemotron-8b"
# model_name = "embeddinggemma-300m" # model_name = "embeddinggemma-300m"
model = CustomModel(model_name) model = CustomModel(model_name)

View File

@ -3,6 +3,9 @@
nproc_per_node=1 nproc_per_node=1
# INFONCE_HARD_NEGATIVES=1 \
# INFONCE_MASK_FAKE_NEGATIVE=True \
MLFLOW_TRACKING_URI=http://0.0.0.0:5004 \ MLFLOW_TRACKING_URI=http://0.0.0.0:5004 \
INFONCE_USE_BATCH=True \ INFONCE_USE_BATCH=True \
CUDA_VISIBLE_DEVICES=0 \ CUDA_VISIBLE_DEVICES=0 \
@ -16,8 +19,8 @@ swift sft \
--lora_alpha 32 \ --lora_alpha 32 \
--target_modules all-linear \ --target_modules all-linear \
--max_length 2048 \ --max_length 2048 \
--dataset v11_dataset_hn \ --dataset generated_250000_religous \
--custom_register_path $(pwd)/../../data/dataset/v11_dataset_hn/generated.py \ --custom_register_path $(pwd)/../../data/dataset/generated_250000_religous/generated.py \
--split_dataset_ratio 0.005 \ --split_dataset_ratio 0.005 \
--eval_strategy steps \ --eval_strategy steps \
--output_dir output \ --output_dir output \

View File

@ -33,8 +33,8 @@ def main():
file_path = os.path.dirname(__file__) file_path = os.path.dirname(__file__)
base_model_path = file_path + "/../../data/models/Qwen3-Embedding-0.6B/model" base_model_path = file_path + "/../../data/models/Qwen3-Embedding-0.6B/model"
peft_model_path = file_path + "/output/v17-20251202-223944/checkpoint-387" peft_model_path = file_path + "/output/v23-20251214-111804/checkpoint-3632"
save_path = file_path + "/output/v17-20251202-223944/merged_checkpoint-387" save_path = file_path + "/output/v23-20251214-111804/merged_checkpoint-3632"
merge(base_model_path, peft_model_path, save_path) merge(base_model_path, peft_model_path, save_path)
items = ["1_Pooling", "config_sentence_transformers.json", "merges.txt", "modules.json", "README.md", "tokenizer_config.json", "tokenizer.json", items = ["1_Pooling", "config_sentence_transformers.json", "merges.txt", "modules.json", "README.md", "tokenizer_config.json", "tokenizer.json",