Query-Doc-Generator/src/pipline.py.py
2025-12-02 15:48:59 +00:00

198 lines
5.7 KiB
Python

import json
import os
import importlib
import re
import random
import tqdm
import pandas as pd
import traceback
def import_lib(path, file_name, package_name):
file_path = path + "/" + file_name + ".py"
spec = importlib.util.spec_from_file_location(file_name, file_path)
imported_file = importlib.util.module_from_spec(spec)
spec.loader.exec_module(imported_file)
return getattr(imported_file, package_name)
Configuration = import_lib(os.path.dirname(__file__) , "configuration", "Configuration")
QueryGenerator = import_lib(os.path.dirname(__file__) , "query_generator", "QueryGenerator")
ParallelRequester = import_lib(os.path.dirname(__file__) , "parallel_requester", "ParallelRequester")
class Pipline:
def __init__(self):
self.file_path = os.path.dirname(__file__)
self.configuration = Configuration()
self.configuration.init_persona()
self.query_generator = QueryGenerator()
def load_data(self):
df = pd.read_csv(self.file_path + "/../data/persian_blog/blogs.csv")
rows = df.values.tolist()
rows = [rows[i][0] for i in range(len(rows))]
return rows
def get_new_path(self):
path = self.file_path + "/../data/generated"
if not os.path.exists(path):
os.makedirs(path)
folders = [f for f in os.listdir(path) if os.path.isdir(os.path.join(path, f))]
pattern = r"^v(\d+)$"
all_numbers = []
for f in folders:
match = re.match(pattern, f)
if match:
num = int(match.group(1))
all_numbers.append(num)
if all_numbers:
number = max(all_numbers) + 1
else:
number = 1
path = os.path.join(path, "v" + str(number))
if not os.path.exists(path):
os.makedirs(path)
return path
def get_json_path(self, save_path):
files = [f for f in os.listdir(save_path) if os.path.isfile(os.path.join(save_path, f))]
pattern = r"^part_(\d+)_dataset\.json$"
all_numbers = []
for f in files:
match = re.match(pattern, f)
if match:
num = int(match.group(1))
all_numbers.append(num)
if all_numbers:
number = max(all_numbers) + 1
else:
number = 1
json_path = os.path.join(save_path, "part_" + str(number) + "_dataset.json")
return json_path
def save_dataset(self, data, save_path):
json_path = self.get_json_path(save_path)
with open(json_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
def get_a_data(self):
with self.lock:
if self.data_idx < len(self.data):
data = self.data[self.data_idx]
data_idx = self.data_idx
else:
data = None
data_idx = None
self.data_idx += 1
return data, data_idx
def exec_function(self, passage):
try:
config = self.configuration.run(passage)
generated_data = self.query_generator.run(passage, config)
one_data = config.copy()
one_data["document"] = passage
one_data["query"] = generated_data["query"]
except Exception as e:
one_data = {"passage": passage, "error": traceback.format_exc()}
return one_data
def make_a_passage(self, selected_lenth, sentences, start_idx):
one_passage = ""
for i in range(start_idx, len(sentences)):
if len(one_passage) + len(sentences[i]) > selected_lenth and len(one_passage) > 0:
return one_passage, i
if one_passage == "":
one_passage += sentences[i]
else:
one_passage += "." + sentences[i]
return one_passage, len(sentences)
def chunk_data(self, passage):
max_length = 3000
min_length = 30
if len(passage) < max_length:
return [passage]
sentences = passage.split(".")
all_passages = []
start_idx = 0
stop_idx = 0
while True:
selected_lenth = random.choice([50, 100, 200, 300, 500, 800, 1300, 2000, 3000])
start_idx = stop_idx
one_passage, stop_idx = self.make_a_passage(selected_lenth, sentences, start_idx)
if len(one_passage) > min_length:
all_passages += [one_passage]
if stop_idx == len(sentences):
break
return all_passages
def pre_process(self, data):
chunk_data = []
for i in tqdm.trange(len(data)):
chunk_data += self.chunk_data(data[i])
random.shuffle(chunk_data)
return chunk_data
def run_one_part(self, chunk_data, save_path, num_threads):
parallel_requester = ParallelRequester()
dataset = parallel_requester.run(chunk_data, self.exec_function, num_threads)
self.save_dataset(dataset, save_path)
def run(self, save_path = None):
data = self.load_data()
chunk_data = self.pre_process(data)
num_data = 250000
num_part_data = 25000
num_threads = 5
if save_path == None:
save_path = self.get_new_path()
for i in range(0, num_data, num_part_data):
start_idx = i
stop_idx = min(i+num_part_data, num_data)
self.run_one_part(chunk_data[start_idx:stop_idx], save_path, num_threads)
def main():
random.seed(42)
pipline = Pipline()
pipline.run()
if __name__ == "__main__":
main()